Turns out upgrading crunch from 0.11.0 to 0.13.0 solves the problem. On Mon, Jan 4, 2016 at 5:40 PM, Yan Yang wrote: > Hi Jeff > > I think the blank configuration may be the issue, > our ExecutorClasses implements Tool and we use > > *ToolRunner.run(new Configuration(), new ExecutorClass(), args) * > > to run the crunch job, which worked fine with MRPipeline all the time. > What is the correct way of inheriting the configuration here? > > Thanks > Yan > > On Mon, Jan 4, 2016 at 2:27 PM, Jeff Quinn wrote: > >> Interesting, how are you submitting your job? Are you using spark-submit >> with the "yarn-master" spark master? Is your main class extending >> CrunchTool? My thinking is that somehow the default configurations are not >> being inherited, and maybe you are working with a totally blank >> Configuration object. >> >> On Mon, Jan 4, 2016 at 2:19 PM, Yan Yang wrote: >> >>> Jeff, >>> >>> Thanks for the suggestion. After I switch the URL to s3 an almost >>> identical exception is now encountered: >>> >>> java.lang.IllegalArgumentException: AWS Access Key ID and Secret Access Key must be specified as the username or password (respectively) of a s3 URL, or by setting the *fs.s3.awsAccessKeyId* or *fs.s3.awsSecretAccessKey* properties (respectively). >>> >>> >>> >>> On Mon, Jan 4, 2016 at 12:46 PM, Jeff Quinn wrote: >>> >>>> Ah ok, I would try it with "s3://",and I think it should work as >>>> expected, assuming the machine role you are using for EMR has the proper >>>> permissions for writing to the bucket. >>>> >>>> You should not need to set fs.s3n.awsSecretAccessKey/fs.s3n.awsAccessKeyId >>>> or any other properties, EMR service should be taking care of that for you. >>>> >>>> On Mon, Jan 4, 2016 at 12:22 PM, Yan Yang wrote: >>>> >>>>> Hi Jeff, >>>>> >>>>> We are using s3n://bucket/path >>>>> >>>>> Thanks >>>>> Yan >>>>> >>>>> On Mon, Jan 4, 2016 at 12:19 PM, Jeff Quinn wrote: >>>>> >>>>>> Hey Yan, >>>>>> >>>>>> Just a hunch but from that stacktrace it looks like you might be >>>>>> using the outdated s3-hadoop filesystem, is the url you are trying to write >>>>>> to of the form s3://bucket/path or s3n://bucket/path? >>>>>> >>>>>> Thanks! >>>>>> >>>>>> Jeff >>>>>> >>>>>> On Mon, Jan 4, 2016 at 12:15 PM, Yan Yang >>>>>> wrote: >>>>>> >>>>>>> Hi >>>>>>> >>>>>>> I have tried to set up a Sparkpipeline to run within AWS EMR. >>>>>>> >>>>>>> The code is as below: >>>>>>> >>>>>>> SparkConf sparkConf = new SparkConf().setAppName("JavaSparkPi"); >>>>>>> JavaSparkContext jsc = new JavaSparkContext(sparkConf); >>>>>>> SparkPipeline pipeline = new SparkPipeline(jsc, "spark-app"); >>>>>>> >>>>>>> PCollection input = pipeline.read(From.avroFile(inputPaths, >>>>>>> Input.class)); >>>>>>> PCollection output = process(input); >>>>>>> pipeline.write(output, To.avroFile(outputPath)); >>>>>>> >>>>>>> The read works and a simple spark write such as calling >>>>>>> saveAsTextFile() on an RDD object also works. >>>>>>> >>>>>>> However write using pipeline.write() hits below exceptions. I have >>>>>>> tried to set fs.s3n.awsAccessKeyId and fs.s3n.awsSecretAccessKey in sparkConf >>>>>>> with the same result: >>>>>>> >>>>>>> java.lang.IllegalArgumentException: AWS Access Key ID and Secret Access Key must be specified as the username or password (respectively) of a s3n URL, or by setting the fs.s3n.awsAccessKeyId or fs.s3n.awsSecretAccessKey properties (respectively). >>>>>>> at org.apache.hadoop.fs.s3.S3Credentials.initialize(S3Credentials.java:70) >>>>>>> at org.apache.hadoop.fs.s3native.Jets3tNativeFileSystemStore.initialize(Jets3tNativeFileSystemStore.java:80) >>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) >>>>>>> at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >>>>>>> at java.lang.reflect.Method.invoke(Method.java:606) >>>>>>> at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187) >>>>>>> at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102) >>>>>>> at org.apache.hadoop.fs.s3native.$Proxy9.initialize(Unknown Source) >>>>>>> at org.apache.hadoop.fs.s3native.NativeS3FileSystem.initialize(NativeS3FileSystem.java:326) >>>>>>> at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2644) >>>>>>> at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:90) >>>>>>> at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2678) >>>>>>> at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2660) >>>>>>> at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:374) >>>>>>> at org.apache.hadoop.fs.Path.getFileSystem(Path.java:296) >>>>>>> at org.apache.avro.mapred.FsInput.(FsInput.java:37) >>>>>>> at org.apache.crunch.types.avro.AvroRecordReader.initialize(AvroRecordReader.java:54) >>>>>>> at org.apache.crunch.impl.mr.run.CrunchRecordReader.initialize(CrunchRecordReader.java:150) >>>>>>> at org.apache.spark.rdd.NewHadoopRDD$$anon$1.(NewHadoopRDD.scala:153) >>>>>>> at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:124) >>>>>>> at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:65) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) >>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) >>>>>>> at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) >>>>>>> at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) >>>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:88) >>>>>>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) >>>>>>> at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) >>>>>>> at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) >>>>>>> at java.lang.Thread.run(Thread.java:745) >>>>>>> >>>>>>> Thanks >>>>>>> Yan >>>>>>> >>>>>> >>>>>> >>>>> >>>> >>> >> >