http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/query/query-fs/004-query-dir.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/query/query-fs/004-query-dir.md b/_docs/drill-docs/query/query-fs/004-query-dir.md
new file mode 100644
index 0000000..47abee9
--- /dev/null
+++ b/_docs/drill-docs/query/query-fs/004-query-dir.md
@@ -0,0 +1,90 @@
+---
+title: "Querying Directories"
+parent: "Querying a File System"
+---
+You can store multiple files in a directory and query them as if they were a
+single entity. You do not have to explicitly join the files. The files must be
+compatible, in the sense that they must have comparable data types and columns
+in the same order. This type of query is not limited to text files; you can
+also query directories of JSON files, for example.
+
+For example, assume that a `testdata` directory contains two files with the
+same structure: `plays.csv` and `moreplays.csv`. The first file contains 7
+records and the second file contains 3 records. The following query returns
+the "union" of the two files, ordered by the first column:
+
+ 0: jdbc:drill:zk=local> select columns[0] as `Year`, columns[1] as Play
+ from dfs.`/Users/brumsby/drill/testdata` order by 1;
+
+ +------------+------------+
+ | Year | Play |
+ +------------+------------+
+ | 1594 | Comedy of Errors |
+ | 1595 | Romeo and Juliet |
+ | 1596 | The Merchant of Venice |
+ | 1599 | As You Like It |
+ | 1599 | Hamlet |
+ | 1601 | Twelfth Night |
+ | 1606 | Macbeth |
+ | 1606 | King Lear |
+ | 1609 | The Winter's Tale |
+ | 1610 | The Tempest |
+ +------------+------------+
+ 10 rows selected (0.296 seconds)
+
+You can drill down further and automatically query subdirectories as well. For
+example, assume that you have a logs directory that contains a subdirectory
+for each year and subdirectories for each month (1 through 12). The month
+directories contain JSON files.
+
+ [root@ip-172-16-1-200 logs]# pwd
+ /mapr/drilldemo/labs/clicks/logs
+ [root@ip-172-16-1-200 logs]# ls
+ 2012 2013 2014
+ [root@ip-172-16-1-200 logs]# cd 2013
+ [root@ip-172-16-1-200 2013]# ls
+ 1 10 11 12 2 3 4 5 6 7 8 9
+
+You can query all of these files, or a subset, by referencing the file system
+once in a Drill query. For example, the following query counts the number of
+records in all of the files inside the `2013` directory:
+
+ 0: jdbc:drill:> select count(*) from MFS.`/mapr/drilldemo/labs/clicks/logs/2013` ;
+ +------------+
+ | EXPR$0 |
+ +------------+
+ | 24000 |
+ +------------+
+ 1 row selected (2.607 seconds)
+
+You can also use variables `dir0`, `dir1`, and so on, to refer to
+subdirectories in your workspace path. For example, assume that `bob.logdata`
+is a workspace that points to the `logs` directory, which contains multiple
+subdirectories: `2012`, `2013`, and `2014`. The following query constrains
+files inside the subdirectory named `2013`. The variable `dir0` refers to the
+first level down from logs, `dir1` to the next level, and so on.
+
+ 0: jdbc:drill:> use bob.logdata;
+ +------------+------------+
+ | ok | summary |
+ +------------+------------+
+ | true | Default schema changed to 'bob.logdata' |
+ +------------+------------+
+ 1 row selected (0.305 seconds)
+
+ 0: jdbc:drill:> select * from logs where dir0='2013' limit 10;
+ +------------+------------+------------+------------+------------+------------+------------+------------+------------+-------------+
+ | dir0 | dir1 | trans_id | date | time | cust_id | device | state | camp_id | keywords |
+ +------------+------------+------------+------------+------------+------------+------------+------------+------------+-------------+
+ | 2013 | 2 | 12115 | 02/23/2013 | 19:48:24 | 3 | IOS5 | az | 5 | who's |
+ | 2013 | 2 | 12127 | 02/26/2013 | 19:42:03 | 11459 | IOS5 | wa | 10 | for |
+ | 2013 | 2 | 12138 | 02/09/2013 | 05:49:01 | 1 | IOS6 | ca | 7 | minutes |
+ | 2013 | 2 | 12139 | 02/23/2013 | 06:58:20 | 1 | AOS4.4 | ms | 7 | i |
+ | 2013 | 2 | 12145 | 02/10/2013 | 10:14:56 | 10 | IOS5 | mi | 6 | wrong |
+ | 2013 | 2 | 12157 | 02/15/2013 | 02:49:22 | 102 | IOS5 | ny | 5 | want |
+ | 2013 | 2 | 12176 | 02/19/2013 | 08:39:02 | 28 | IOS5 | or | 0 | and |
+ | 2013 | 2 | 12194 | 02/24/2013 | 08:26:17 | 125445 | IOS5 | ar | 0 | say |
+ | 2013 | 2 | 12236 | 02/05/2013 | 01:40:05 | 10 | IOS5 | nj | 2 | sir |
+ | 2013 | 2 | 12249 | 02/03/2013 | 04:45:47 | 21725 | IOS5 | nj | 5 | no |
+ +------------+------------+------------+------------+------------+------------+------------+------------+------------+-------------+
+ 10 rows selected (0.583 seconds)
\ No newline at end of file
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/rn/001-0.5.0rn.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/rn/001-0.5.0rn.md b/_docs/drill-docs/rn/001-0.5.0rn.md
new file mode 100644
index 0000000..2dff978
--- /dev/null
+++ b/_docs/drill-docs/rn/001-0.5.0rn.md
@@ -0,0 +1,29 @@
+---
+title: "Apache Drill 0.5.0 Release Notes"
+parent: "Release Notes"
+---
+
+Apache Drill 0.5.0, the first beta release for Drill, is designed to help
+enthusiasts start working and experimenting with Drill. It also continues the
+Drill monthly release cycle as we drive towards general availability.
+
+The 0.5.0 release is primarily a bug fix release, with [more than 100 JIRAs](h
+ttps://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12313820&versi
+on=12324880) closed, but there are some notable features. For information
+about the features, see the [Apache Drill Blog for the 0.5.0
+release](https://blogs.apache.org/drill/entry/apache_drill_beta_release_see).
+
+This release is available as [binary](http://www.apache.org/dyn/closer.cgi/inc
+ubator/drill/drill-0.5.0-incubating/apache-drill-0.5.0-incubating.tar.gz) and
+[source](http://www.apache.org/dyn/closer.cgi/incubator/drill/drill-0.5.0-incu
+bating/apache-drill-0.5.0-incubating-src.tar.gz) tarballs that are compiled
+against Apache Hadoop. Drill has been tested against MapR, Cloudera, and
+Hortonworks Hadoop distributions. There are associated build profiles and
+JIRAs that can help you run Drill against your preferred distribution.
+
+Apache Drill 0.5.0 Key Notes and Limitations
+
+ * The current release supports in memory and beyond memory execution. However, you must disable memory-intensive hash aggregate and hash join operations to leverage this functionality.
+ * While the Drill execution engine supports dynamic schema changes during the course of a query, some operators have yet to implement support for this behavior, such as Sort. Others operations, such as streaming aggregate, may have partial support that leads to unexpected results.
+ * There are known issues with joining text files without using an intervening view. See [DRILL-1401](https://issues.apache.org/jira/browse/DRILL-1401) for more information.
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/rn/002-0.4.0rn.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/rn/002-0.4.0rn.md b/_docs/drill-docs/rn/002-0.4.0rn.md
new file mode 100644
index 0000000..d0dac30
--- /dev/null
+++ b/_docs/drill-docs/rn/002-0.4.0rn.md
@@ -0,0 +1,42 @@
+---
+title: "Apache Drill 0.4.0 Release Notes"
+parent: "Release Notes"
+---
+The 0.4.0 release is a developer preview release, designed to help enthusiasts
+start to work with and experiment with Drill. It is the first Drill release
+that provides distributed query execution.
+
+This release is built upon [more than 800
+JIRAs](https://issues.apache.org/jira/browse/DRILL/fixforversion/12324963/).
+It is a pre-beta release on the way towards Drill. As a developer snapshot,
+the release contains a large number of outstanding bugs that will make some
+use cases challenging. Feel free to consult outstanding issues [targeted for
+the 0.5.0
+release](https://issues.apache.org/jira/browse/DRILL/fixforversion/12324880/)
+to see whether your use case is affected.
+
+To read more about this release and new features introduced, please view the
+[0.4.0 announcement blog
+entry](https://blogs.apache.org/drill/entry/announcing_apache_drill_0_4).
+
+The release is available as both [binary](http://www.apache.org/dyn/closer.cgi
+/incubator/drill/drill-0.4.0-incubating/apache-drill-0.4.0-incubating.tar.gz)
+and [source](http://www.apache.org/dyn/closer.cgi/incubator/drill/drill-0.4.0-
+incubating/apache-drill-0.4.0-incubating-src.tar.gz) tarballs. In both cases,
+these are compiled against Apache Hadoop. Drill has also been tested against
+MapR, Cloudera and Hortonworks Hadoop distributions and there are associated
+build profiles or JIRAs that can help you run against your preferred
+distribution.
+
+Some Key Notes & Limitations
+
+ * The current release supports in memory and beyond memory execution. However, users must disable memory-intensive hash aggregate and hash join operations to leverage this functionality.
+ * In many cases,merge join operations return incorrect results.
+ * Use of a local filter in a join “on” clause when using left, right or full outer joins may result in incorrect results.
+ * Because of known memory leaks and memory overrun issues you may need more memory and you may need to restart the system in some cases.
+ * Some types of complex expressions, especially those involving empty arrays may fail or return incorrect results.
+ * While the Drill execution engine supports dynamic schema changes during the course of a query, some operators have yet to implement support for this behavior (such as Sort). Others operations (such as streaming aggregate) may have partial support that leads to unexpected results.
+ * Protobuf, UDF, query plan interfaces and all interfaces are subject to change in incompatible ways.
+ * Multiplication of some types of DECIMAL(28+,*) will return incorrect result.
+
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/rn/003-alpha-rn.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/rn/003-alpha-rn.md b/_docs/drill-docs/rn/003-alpha-rn.md
new file mode 100644
index 0000000..15e160c
--- /dev/null
+++ b/_docs/drill-docs/rn/003-alpha-rn.md
@@ -0,0 +1,44 @@
+---
+title: "Apache Drill M1 Release Notes (Apache Drill Alpha)"
+parent: "Release Notes"
+---
+### Milestone 1 Goals
+
+The first release of Apache Drill is designed as a technology preview for
+people to better understand the architecture and vision. It is a functional
+release tying to piece together the key components of a next generation MPP
+query engine. It is designed to allow milestone 2 (M2) to focus on
+architectural analysis and performance optimization.
+
+ * Provide a new optimistic DAG execution engine for data analysis
+ * Build a new columnar shredded in-memory format and execution model that minimizes data serialization/deserialization costs and operator complexity
+ * Provide a model for runtime generated functions and relational operators that minimizes complexity and maximizes performance
+ * Support queries against columnar on disk format (Parquet) and JSON
+ * Support the most common set of standard SQL read-only phrases using ANSI standards. Includes: SELECT, FROM, WHERE, HAVING, ORDER, GROUP BY, IN, DISTINCT, LEFT JOIN, RIGHT JOIN, INNER JOIN
+ * Support schema-on-read querying and execution
+ * Build a set of columnar operation primitives including Merge Join, Sort, Streaming Aggregate, Filter, Selection Vector removal.
+ * Support unlimited level of subqueries and correlated subqueries
+ * Provided an extensible query-language agnostic JSON-base logical data flow syntax.
+ * Support complex data type manipulation via logical plan operations
+
+### Known Issues
+
+SQL Parsing
+Because Apache Drill is built to support late-bound changing schemas while SQL
+is statically typed, there are couple of special requirements that are
+required writing SQL queries. These are limited to the current release and
+will be correct in a future milestone release.
+
+ * All tables are exposed as a single map field that contains
+ * Drill Alpha doesn't support implicit or explicit casts outside those required above.
+ * Drill Alpha does not include, there are currently a couple of differences for how to write a query in In order to query against
+
+UDFs
+
+ * Drill currently supports simple and aggregate functions using scalar, repeated and
+ * Nested data support incomplete. Drill Alpha supports nested data structures as well repeated fields. However,
+ * asd
+
+
+
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/rn/004-0.6.0-rn.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/rn/004-0.6.0-rn.md b/_docs/drill-docs/rn/004-0.6.0-rn.md
new file mode 100644
index 0000000..22aa96b
--- /dev/null
+++ b/_docs/drill-docs/rn/004-0.6.0-rn.md
@@ -0,0 +1,32 @@
+---
+title: "Apache Drill 0.6.0 Release Notes (Apache Drill Alpha)"
+parent: "Release Notes"
+---
+Apache Drill 0.6.0, the second beta release for Drill, is designed to help
+enthusiasts start working and experimenting with Drill. It also continues the
+Drill monthly release cycle as we drive towards general availability.
+
+This release is available as [binary](http://www.apache.org/dyn/closer.cgi/inc
+ubator/drill/drill-0.5.0-incubating/apache-drill-0.5.0-incubating.tar.gz) and
+[source](http://www.apache.org/dyn/closer.cgi/incubator/drill/drill-0.5.0-incu
+bating/apache-drill-0.5.0-incubating-src.tar.gz) tarballs that are compiled
+against Apache Hadoop. Drill has been tested against MapR, Cloudera, and
+Hortonworks Hadoop distributions. There are associated build profiles and
+JIRAs that can help you run Drill against your preferred distribution.
+
+Apache Drill 0.6.0 Key Features
+
+This release is primarily a bug fix release, with [more than 30 JIRAs closed](
+https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12313820&vers
+ion=12327472), but there are some notable features:
+
+ * Direct ANSI SQL access to MongoDB, using the latest [MongoDB Plugin for Apache Drill](/confluence/display/DRILL/MongoDB+Plugin+for+Apache+Drill)
+ * Filesystem query performance improvements with partition pruning
+ * Ability to use the file system as a persistent store for query profiles and diagnostic information
+ * Window function support (alpha)
+
+Apache Drill 0.6.0 Key Notes and Limitations
+
+ * The current release supports in-memory and beyond-memory execution. However, you must disable memory-intensive hash aggregate and hash join operations to leverage this functionality.
+ * While the Drill execution engine supports dynamic schema changes during the course of a query, some operators have yet to implement support for this behavior, such as Sort. Other operations, such as streaming aggregate, may have partial support that leads to unexpected results.
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/rn/005-0.7.0-rn.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/rn/005-0.7.0-rn.md b/_docs/drill-docs/rn/005-0.7.0-rn.md
new file mode 100644
index 0000000..e25a58a
--- /dev/null
+++ b/_docs/drill-docs/rn/005-0.7.0-rn.md
@@ -0,0 +1,56 @@
+---
+title: "Apache Drill 0.7.0 Release Notes (Apache Drill Alpha)"
+parent: "Release Notes"
+---
+Apache Drill 0.7.0, the third beta release for Drill, is designed to help
+enthusiasts start working and experimenting with Drill. It also continues the
+Drill monthly release cycle as we drive towards general availability.
+
+This release is available as
+[binary](http://www.apache.org/dyn/closer.cgi/drill/drill-0.7.0/apache-
+drill-0.7.0.tar.gz) and
+[source](http://www.apache.org/dyn/closer.cgi/drill/drill-0.7.0/apache-
+drill-0.7.0-src.tar.gz) tarballs that are compiled against Apache Hadoop.
+Drill has been tested against MapR, Cloudera, and Hortonworks Hadoop
+distributions. There are associated build profiles and JIRAs that can help you
+run Drill against your preferred distribution
+
+Apache Drill 0.7.0 Key Features
+
+ * No more dependency on UDP/Multicast - Making it possible for Drill to work well in the following scenarios:
+
+ * UDP multicast not enabled (as in EC2)
+
+ * Cluster spans multiple subnets
+
+ * Cluster has multihome configuration
+
+ * New functions to natively work with nested data - KVGen and Flatten
+
+ * Support for Hive 0.13 (Hive 0.12 with Drill is not supported any more)
+
+ * Improved performance when querying Hive tables and File system through partition pruning
+
+ * Improved performance for HBase with LIKE operator pushdown
+
+ * Improved memory management
+
+ * Drill web UI monitoring and query profile improvements
+
+ * Ability to parse files without explicit extensions using default storage format specification
+
+ * Fixes for dealing with complex/nested data objects in Parquet/JSON
+
+ * Fast schema return - Improved experience working with BI/query tools by returning metadata quickly
+
+ * Several hang related fixes
+
+ * Parquet writer fixes for handling large datasets
+
+ * Stability improvements in ODBC and JDBC drivers
+
+Apache Drill 0.7.0 Key Notes and Limitations
+
+ * The current release supports in-memory and beyond-memory execution. However, you must disable memory-intensive hash aggregate and hash join operations to leverage this functionality.
+ * While the Drill execution engine supports dynamic schema changes during the course of a query, some operators have yet to implement support for this behavior, such as Sort. Other operations, such as streaming aggregate, may have partial support that leads to unexpected results.
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/001-data-types.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/001-data-types.md b/_docs/drill-docs/sql-ref/001-data-types.md
new file mode 100644
index 0000000..1f0ba0e
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/001-data-types.md
@@ -0,0 +1,96 @@
+---
+title: "Data Types"
+parent: "SQL Reference"
+---
+You can use the following SQL data types in your Drill queries:
+
+#### Binary Types
+
+ * BYTEA
+ * VARBINARY
+
+#### Character Types
+
+ * CHAR
+ * VARCHAR
+ * TEXT
+
+#### Date/Time Data Types
+
+ * DATE
+ * INTERVAL
+ * Interval Year (stores year and month)
+
+ * Interval Day (stores day, hour, minute, seconds, and milliseconds)
+ * TIME
+ * TIMESTAMP
+
+Refer to [Supported Date/Time Data Type formats](https://cwiki.apache.org/conf
+luence/pages/viewpage.action?pageId=44304039).
+
+#### Integer
+
+ * BIGINT
+
+ * INT
+ * SMALLINT
+
+ * TINYINT
+
+#### Numeric Types
+
+ * DECIMAL
+ * FLOAT
+ * DOUBLE PRECISION (FLOAT 8)
+ * REAL (FLOAT 4)
+
+#### Boolean Types
+
+ * FALSE
+ * NULL
+ * TRUE
+
+# Complex Data Types
+
+Drill provides map and array data types to work with complex and nested data
+structures. For analysis of complex data, a more modern JSON-style approach to
+writing queries is more effective than using standard SQL functions.
+
+The following table provides descriptions and examples of the complex data
+types:
+
+<table><tbody>
+ <tr><th>Data Type</th>
+ <th>Description</th>
+ <th>Example</th></tr>
+ <tr>
+ <td valign="top">Map</td>
+ <td valign="top">A map is a set of name/value pairs. </br>
+ A value in an map can be a scalar type, </br>
+ such as string or int, or a map can be a </br>
+ complex type, such as an array or another map.</td>
+ <td valign="top">Map with scalar type values:</br><code> "phoneNumber": { "areaCode": "622", "number": "1567845"}</code></br>Map with complex type value:<code></br> { "citiesLived" : [ { "place" : "Los Angeles",</br>
+ "yearsLived" : [ "1989",</br>
+ "1993",</br>
+ "1998",</br>
+ "2002"</br>
+ ]</br>
+
+ } ] }</code></td>
+ </tr>
+ <tr>
+ <td valign="top">Array</td>
+ <td valign="top">An array is a repeated list of values. </br>
+ A value in an array can be a scalar type, </br>
+ such as string or int, or an array can be a</br>
+ complex type, such as a map or another array.</td>
+ <td valign="top">Array with scalar values:</br><code> "yearsLived": ["1990", "1993", "1998", "2008"]</code></br>Array with complex type values:</br><code> "children":</br> [ { "age" : "10", </br> "gender" : "Male",</br> "name" : "Earl"</br> }, </br> { "age" : "6",</br> "gender" : "Male",</br> "name" : "Sam"</br> },</br> { "age" : "8",</br> "gender" : "Male", </br> "name" : "Kit" </br>  
;}</br> ]</code></td>
+ </tr>
+ </tbody></table>
+
+
+<!--| Data Type | Description | Example |
+| --------- | ----------- | --------|
+| Map | A map is a set of name/value pairs. A value in an map can be a scalar type, such as string or int, or a map can be a complex type, such as an array or another map.| Map with scalar type values: "phoneNumber": { "areaCode": "622", "number": "1567845"} Map with complex type value :{ "citiesLived" : [ { "place" : "Los Angeles", "yearsLived" : [ "1989", "1993", "1998", "2002"] } ] } |
+|Array| An array is a repeated list of values. A value in an array can be a scalar type, such as string or int, or an array can be a complex type, such as a map or another array.| Array with scalar type values: "yearsLived": ["1990"", "1993", "1998", "2008"] Array with complex type value :"children" : [ { "age" : "10", "gender" : "Male", "name": "Earl" }, {"age" : "6", "gender": "Male", "name": "Sam"}, { "age" : "8", "gender" : "Male", "name" : "Kit" }] |
+-->
\ No newline at end of file
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/002-operators.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/002-operators.md b/_docs/drill-docs/sql-ref/002-operators.md
new file mode 100644
index 0000000..763b809
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/002-operators.md
@@ -0,0 +1,71 @@
+---
+title: "Operators"
+parent: "SQL Reference"
+---
+You can use various types of operators in your Drill queries to perform
+operations on your data.
+
+## Logical Operators
+
+You can use the following logical operators in your Drill queries:
+
+ * AND
+ * BETWEEN
+ * IN
+ * LIKE
+ * NOT
+ * OR
+
+## Comparison Operators
+
+You can use the following comparison operators in your Drill queries:
+
+ * <
+ * \>
+ * <=
+ * \>=
+ * =
+ * <>
+ * IS NULL
+ * IS NOT NULL
+ * IS FALSE
+ * IS NOT FALSE
+ * IS TRUE
+ * IS NOT TRUE
+
+## Pattern Matching Operators
+
+You can use the following pattern matching operators in your Drill queries:
+
+ * LIKE
+ * NOT LIKE
+ * SIMILAR TO
+ * NOT SIMILAR TO
+
+## Math Operators
+
+You can use the following math operators in your Drill queries:
+
+**Operator**| **Description**
+---|---
++| Addition
+-| Subtraction
+*| Multiplication
+/| Division
+
+## Subquery Operators
+
+You can use the following subquery operators in your Drill queries:
+
+ * EXISTS
+ * IN
+
+See [SELECT Statements](https://cwiki.apache.org/confluence/display/DRILL/SELE
+CT+Statements).
+
+## String Operators
+
+You can use the following string operators in your Drill queries:
+
+ * string || string
+ * string || non-string or non-string || string
\ No newline at end of file
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/003-functions.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/003-functions.md b/_docs/drill-docs/sql-ref/003-functions.md
new file mode 100644
index 0000000..2494b0e
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/003-functions.md
@@ -0,0 +1,185 @@
+---
+title: "SQL Functions"
+parent: "SQL Reference"
+---
+You can use the following types of functions in your Drill queries:
+
+ * Scalar Functions
+ * Aggregate Functions
+ * Aggregate Statistics Functions
+ * Convert Functions
+ * Nested Data Functions
+
+## Scalar Functions
+
+### Math
+
+You can use the following scalar math functions in your Drill queries:
+
+ * ABS
+ * CEIL
+ * CEILING
+ * DIV
+ * FLOOR
+ * MOD
+ * POWER
+ * RANDOM
+ * ROUND
+ * SIGN
+ * SQRT
+ * TRUNC
+
+### String Functions
+
+The following table provides the string functions that you can use in your
+Drill queries:
+
+Function| Return Type
+--------|---
+char_length(string) or character_length(string)| int
+concat(str "any" [, str "any" [, ...] ])| text
+convert_from(string bytea, src_encoding name)| text
+convert_to(string text, dest_encoding name)| bytea
+initcap(string)| text
+left(str text, n int)| text
+length(string)| int
+length(string bytes, encoding name )| int
+lower(string)| text
+lpad(string text, length int [, fill text])| text
+ltrim(string text [, characters text])| text
+position(substring in string)| int
+regexp_replace(string text, pattern text, replacement text [, flags text])|text
+replace(string text, from text, to text)| text
+right(str text, n int)| text
+rpad(string text, length int [, fill text])| text
+rtrim(string text [, characters text])| text
+strpos(string, substring)| int
+substr(string, from [, count])| text
+substring(string [from int] [for int])| text
+trim([leading | trailing | both] [characters] from string)| text
+upper(string)| text
+
+
+### Date/Time Functions
+
+The following table provides the date/time functions that you can use in your
+Drill queries:
+
+**Function**| **Return Type**
+---|---
+current_date| date
+current_time| time with time zone
+current_timestamp| timestamp with time zone
+date_add(date,interval expr type)| date/datetime
+date_part(text, timestamp)| double precision
+date_part(text, interval)| double precision
+date_sub(date,INTERVAL expr type)| date/datetime
+extract(field from interval)| double precision
+extract(field from timestamp)| double precision
+localtime| time
+localtimestamp| timestamp
+now()| timestamp with time zone
+timeofday()| text
+
+### Data Type Formatting Functions
+
+The following table provides the data type formatting functions that you can
+use in your Drill queries:
+
+**Function**| **Return Type**
+---|---
+to_char(timestamp, text)| text
+to_char(int, text)| text
+to_char(double precision, text)| text
+to_char(numeric, text)| text
+to_date(text, text)| date
+to_number(text, text)| numeric
+to_timestamp(text, text)| timestamp with time zone
+to_timestamp(double precision)| timestamp with time zone
+
+## Aggregate Functions
+
+The following table provides the aggregate functions that you can use in your
+Drill queries:
+
+**Function** | **Argument Type** | **Return Type**
+ -------- | ------------- | -----------
+avg(expression)| smallint, int, bigint, real, double precision, numeric, or interval| numeric for any integer-type argument, double precision for a floating-point argument, otherwise the same as the argument data type
+count(*)| _-_| bigint
+count([DISTINCT] expression)| any| bigint
+max(expression)| any array, numeric, string, or date/time type| same as argument type
+min(expression)| any array, numeric, string, or date/time type| same as argument type
+sum(expression)| smallint, int, bigint, real, double precision, numeric, or interval| bigint for smallint or int arguments, numeric for bigint arguments, double precision for floating-point arguments, otherwise the same as the argument data type
+
+
+## Aggregate Statistics Functions
+
+The following table provides the aggregate statistics functions that you can use in your Drill queries:
+
+**Function**| **Argument Type**| **Return Type**
+ -------- | ------------- | -----------
+stddev(expression)| smallint, int, bigint, real, double precision, or numeric| double precision for floating-point arguments, otherwise numeric
+stddev_pop(expression)| smallint, int, bigint, real, double precision, or numeric| double precision for floating-point arguments, otherwise numeric
+stddev_samp(expression)| smallint, int, bigint, real, double precision, or numeric| double precision for floating-point arguments, otherwise numeric
+variance(expression)| smallint, int, bigint, real, double precision, or numeric| double precision for floating-point arguments, otherwise numeric
+var_pop(expression)| smallint, int, bigint, real, double precision, or numeric| double precision for floating-point arguments, otherwise numeric
+var_samp(expression)| smallint, int, bigint, real, double precision, or numeric| double precision for floating-point arguments, otherwise numeric
+
+
+## Convert Functions
+
+You can use the CONVERT_TO and CONVERT_FROM functions to encode and decode
+data when you query your data sources with Drill. For example, HBase stores
+data as encoded byte arrays (VARBINARY data). When you issue a query with the
+CONVERT_FROM function on HBase, Drill decodes the data and converts it to the
+specified data type. In instances where Drill sends data back to HBase during
+a query, you can use the CONVERT_TO function to change the data type to bytes.
+
+Although you can achieve the same results by using the CAST function for some
+data types (such as VARBINARY to VARCHAR conversions), in general it is more
+efficient to use CONVERT functions when your data sources return binary data.
+When your data sources return more conventional data types, you can use the
+CAST function.
+
+The following table provides the data types that you use with the CONVERT_TO
+and CONVERT_FROM functions:
+
+**Type**| **Input Type**| **Output Type**
+---|---|---
+BOOLEAN_BYTE| bytes(1)| boolean
+TINYINT_BE| bytes(1)| tinyint
+TINYINT| bytes(1)| tinyint
+SMALLINT_BE| bytes(2)| smallint
+SMALLINT| bytes(2)| smallint
+INT_BE| bytes(4)| int
+INT| bytes(4)| int
+BIGINT_BE| bytes(8)| bigint
+BIGINT| bytes(8)| bigint
+FLOAT| bytes(4)| float (float4)
+DOUBLE| bytes(8)| double (float8)
+INT_HADOOPV| bytes(1-9)| int
+BIGINT_HADOOPV| bytes(1-9)| bigint
+DATE_EPOCH_BE| bytes(8)| date
+DATE_EPOCH| bytes(8)| date
+TIME_EPOCH_BE| bytes(8)| time
+TIME_EPOCH| bytes(8)| time
+UTF8| bytes| varchar
+UTF16| bytes| var16char
+UINT8| bytes(8)| uint8
+
+A common use case for CONVERT_FROM is when a data source embeds complex data
+inside a column. For example, you may have an HBase or MapR-DB table with
+embedded JSON data:
+
+ select CONVERT_FROM(col1, 'JSON')
+ FROM hbase.table1
+ ...
+
+## Nested Data Functions
+
+This section contains descriptions of SQL functions that you can use to
+analyze nested data:
+
+ * [FLATTEN Function](/confluence/display/DRILL/FLATTEN+Function)
+ * [KVGEN Function](/confluence/display/DRILL/KVGEN+Function)
+ * [REPEATED_COUNT Function](/confluence/display/DRILL/REPEATED_COUNT+Function)
\ No newline at end of file
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/004-nest-functions.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/004-nest-functions.md b/_docs/drill-docs/sql-ref/004-nest-functions.md
new file mode 100644
index 0000000..a07dd51
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/004-nest-functions.md
@@ -0,0 +1,10 @@
+---
+title: "Nested Data Functions"
+parent: "SQL Reference"
+---
+This section contains descriptions of SQL functions that you can use to
+analyze nested data:
+
+ * [FLATTEN Function](/confluence/display/DRILL/FLATTEN+Function)
+ * [KVGEN Function](/confluence/display/DRILL/KVGEN+Function)
+ * [REPEATED_COUNT Function](/confluence/display/DRILL/REPEATED_COUNT+Function)
\ No newline at end of file
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/005-cmd-summary.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/005-cmd-summary.md b/_docs/drill-docs/sql-ref/005-cmd-summary.md
new file mode 100644
index 0000000..bd3c73e
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/005-cmd-summary.md
@@ -0,0 +1,16 @@
+---
+title: "SQL Commands Summary"
+parent: "SQL Reference"
+---
+The following table provides a list of the SQL commands that Drill supports,
+with their descriptions and example syntax:
+
+<div class="table-wrap"><table class="confluenceTable"><tbody><tr><th class="confluenceTh">Command</th><th class="confluenceTh">Description</th><th class="confluenceTh">Syntax</th></tr><tr><td valign="top" class="confluenceTd">ALTER SESSION</td><td valign="top" class="confluenceTd">Changes a system setting for the duration of a session. A session ends when you quit the Drill shell. For a list of Drill options and their descriptions, refer to <a href="https://cwiki.apache.org/confluence/display/DRILL/Planning+and+Execution+Options" rel="nofollow">Planning and Execution Options</a>.</td><td valign="top" class="confluenceTd"><code>ALTER SESSION SET `option_name`='string';<br />ALTER SESSION SET `option_name`=TRUE | FALSE;</code></td></tr><tr><td valign="top" class="confluenceTd">ALTER SYSTEM</td><td valign="top" class="confluenceTd">Permanently changes a system setting. The new settings persist across all sessions. For a list of Drill options and their descriptions, refer to <a href="h
ttps://cwiki.apache.org/confluence/display/DRILL/Planning+and+Execution+Options" rel="nofollow">Planning and Execution Options</a>.</td><td valign="top" class="confluenceTd"><code>ALTER SYSTEM `option_name`='string'<br />ALTER SYSTEM `option_name`=TRUE | FALSE;</code></td></tr><tr><td valign="top" class="confluenceTd"><p><a href="/confluence/display/DRILL/CREATE+TABLE+AS+%28CTAS%29+Command">CREATE TABLE AS<br />(CTAS)</a></p></td><td valign="top" class="confluenceTd"><p>Creates a new table and populates the new table with rows returned from a SELECT query. Use the CREATE TABLE AS (CTAS) statement in place of INSERT INTO. When you issue the CTAS command, you create a directory that contains parquet or CSV files. Each workspace in a file system has a default file type.</p><p>You can specify which writer you want Drill to use when creating a table: parquet, CSV, or JSON (as specified with <span style="line-height: 1.4285715;">the </span><code>store.format</code><span style="line-height
: 1.4285715;"> option<span><span>).</span></span></span></p></td><td valign="top" class="confluenceTd"><code>CREATE TABLE new_table_name AS <query>;</code></td></tr><tr><td valign="top" colspan="1" class="confluenceTd">CREATE VIEW</td><td valign="top" colspan="1" class="confluenceTd"><p>Creates a new view based on the results of a SELECT query.</p></td><td valign="top" colspan="1" class="confluenceTd"><code>CREATE VIEW view_name [(column_list)] AS <query>;</code></td></tr><tr><td valign="top" colspan="1" class="confluenceTd">DROP VIEW</td><td valign="top" colspan="1" class="confluenceTd">Removes one or more views.</td><td valign="top" colspan="1" class="confluenceTd"><code>DROP VIEW view_name [, <em class="replaceable">view_name</em>] ...; </code></td></tr><tr><td valign="top" colspan="1" class="confluenceTd"><a href="https://cwiki.apache.org/confluence/display/DRILL/EXPLAIN+Commands" rel="nofollow">EXPLAIN PLAN FOR</a></td><td valign="top" colspan="1" class="conflue
nceTd">Returns the physical plan for a particular query.</td><td valign="top" colspan="1" class="confluenceTd"><code>EXPLAIN PLAN FOR <query>;</code></td></tr><tr><td valign="top" colspan="1" class="confluenceTd"><a href="https://cwiki.apache.org/confluence/display/DRILL/EXPLAIN+Commands" rel="nofollow">EXPLAIN PLAN WITHOUT IMPLEMENTATION FOR</a></td><td valign="top" colspan="1" class="confluenceTd">Returns the logical plan for a particular query.</td><td valign="top" colspan="1" class="confluenceTd"><code>EXPLAIN PLAN WITHOUT IMPLEMENTATION FOR <query>;</code></td></tr><tr><td valign="top" colspan="1" class="confluenceTd"><a href="https://cwiki.apache.org/confluence/display/DRILL/SELECT+Statements" rel="nofollow">SELECT</a></td><td valign="top" colspan="1" class="confluenceTd">Retrieves data from tables and files.</td><td valign="top" colspan="1" class="confluenceTd"><code>[WITH subquery]<br />SELECT column_list FROM table_name <br />[WHERE clause]<br />[GROUP BY clause
]<br />[HAVING clause]<br />[ORDER BY clause];</code></td></tr><tr><td valign="top" colspan="1" class="confluenceTd">SHOW DATABASES</td><td valign="top" colspan="1" class="confluenceTd">Returns a list of available schemas. Equivalent to SHOW SCHEMAS.</td><td valign="top" colspan="1" class="confluenceTd"><code>SHOW DATABASES;</code></td></tr><tr><td valign="top" colspan="1" class="confluenceTd"><a href="https://cwiki.apache.org/confluence/display/DRILL/SHOW+FILES+Command" rel="nofollow">SHOW FILES</a></td><td valign="top" colspan="1" class="confluenceTd">Returns a list of files in a file system schema.</td><td valign="top" colspan="1" class="confluenceTd"><code>SHOW FILES IN filesystem.`schema_name`;<br />SHOW FILES FROM filesystem.`schema_name`;</code></td></tr><tr><td valign="top" colspan="1" class="confluenceTd">SHOW SCHEMAS</td><td valign="top" colspan="1" class="confluenceTd">Returns a list of available schemas. Equivalent to SHOW DATABASES.</td><td valign="top" colspan="1" clas
s="confluenceTd"><code>SHOW SCHEMAS;</code></td></tr><tr><td valign="top" colspan="1" class="confluenceTd">SHOW TABLES</td><td valign="top" colspan="1" class="confluenceTd">Returns a list of tables for all schemas. Optionally, you can first issue the <code>USE </code>command to identify the schema for which you want to view tables.<br />For example, the following <code>USE</code> statement tells Drill that you only want information from the <code>hive.default</code> schema:<br /><code>USE hive.`default`;</code></td><td valign="top" colspan="1" class="confluenceTd"><code>SHOW TABLES;</code></td></tr><tr><td valign="top" colspan="1" class="confluenceTd">USE</td><td valign="top" colspan="1" class="confluenceTd">Change to a particular schema. When you opt to use a particular schema, Drill issues queries on that schema only.</td><td valign="top" colspan="1" class="confluenceTd"><code>USE schema_name;</code></td></tr></tbody></table></div>
+
+Click on any of the following links for more information about the various
+commands:
+
+ * [CREATE TABLE AS (CTAS) Command](/confluence/display/DRILL/CREATE+TABLE+AS+%28CTAS%29+Command)
+ * [EXPLAIN Commands](/confluence/display/DRILL/EXPLAIN+Commands)
+ * [SELECT Statements](/confluence/display/DRILL/SELECT+Statements)
+ * [SHOW FILES Command](/confluence/display/DRILL/SHOW+FILES+Command)
\ No newline at end of file
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/006-reserved-wds.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/006-reserved-wds.md b/_docs/drill-docs/sql-ref/006-reserved-wds.md
new file mode 100644
index 0000000..6df4360
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/006-reserved-wds.md
@@ -0,0 +1,16 @@
+---
+title: "Reserved Keyswords"
+parent: "SQL Reference"
+---
+When you use a reserved keyword in a Drill query, enclose the word in
+backticks. For example, if you issue the following query to Drill,
+you must include backticks around the word TABLES because TABLES is a reserved
+keyword:
+
+``SELECT * FROM INFORMATION_SCHEMA.`TABLES`;``
+
+The following table provides the Drill reserved keywords that require back
+ticks:
+
+<div class="table-wrap"><table class="confluenceTable"><tbody><tr><td valign="top" class="confluenceTd"><h1 id="ReservedKeywords-A">A</h1><p>ABS<br />ALL<br />ALLOCATE<br />ALLOW<br />ALTER<br />AND<br />ANY<br />ARE<br />ARRAY<br />AS<br />ASENSITIVE<br />ASYMMETRIC<br />AT<br />ATOMIC<br />AUTHORIZATION<br />AVG</p><h1 id="ReservedKeywords-B">B</h1><p>BEGIN<br />BETWEEN<br />BIGINT<br />BINARY<br />BIT<br />BLOB<br />BOOLEAN<br />BOTH<br />BY</p><h1 id="ReservedKeywords-C">C</h1><p>CALL<br />CALLED<br />CARDINALITY<br />CASCADED<br />CASE<br />CAST<br />CEIL<br />CEILING<br />CHAR<br />CHARACTER<br />CHARACTER_LENGTH<br />CHAR_LENGTH<br />CHECK<br />CLOB<br />CLOSE<br />COALESCE<br />COLLATE<br />COLLECT<br />COLUMN<br />COMMIT<br />CONDITION<br />CONNECT<br />CONSTRAINT<br />CONVERT<br />CORR<br />CORRESPONDING<br />COUNT<br />COVAR_POP<br />COVAR_SAMP<br />CREATE<br />CROSS<br />CUBE<br />CUME_DIST<br />CURRENT<br />CURRENT_CATALOG<br />CURRENT_DATE<br />CURRENT_DEFAULT_TRANSFOR
M_GROUP<br />CURRENT_PATH<br />CURRENT_ROLE<br />CURRENT_SCHEMA<br />CURRENT_TIME<br />CURRENT_TIMESTAMP<br />CURRENT_TRANSFORM_GROUP_FOR_TYPE<br />CURRENT_USER<br />CURSOR<br />CYCLE</p></td><td valign="top" class="confluenceTd"><h1 id="ReservedKeywords-D">D</h1><p>DATABASES<br />DATE<br />DAY<br />DEALLOCATE<br />DEC<br />DECIMAL<br />DECLARE<br />DEFAULT<br />DEFAULT_KW<br />DELETE<br />DENSE_RANK<br />DEREF<br />DESCRIBE<br />DETERMINISTIC<br />DISALLOW<br />DISCONNECT<br />DISTINCT<br />DOUBLE<br />DROP<br />DYNAMIC</p><h1 id="ReservedKeywords-E">E</h1><p>EACH<br />ELEMENT<br />ELSE<br />END<br />END_EXEC<br />ESCAPE<br />EVERY<br />EXCEPT<br />EXEC<br />EXECUTE<br />EXISTS<br />EXP<br />EXPLAIN<br />EXTERNAL<br />EXTRACT</p><h1 id="ReservedKeywords-F">F</h1><p>FALSE<br />FETCH<br />FILES<br />FILTER<br />FIRST_VALUE<br />FLOAT<br />FLOOR<br />FOR<br />FOREIGN<br />FREE<br />FROM<br />FULL<br />FUNCTION<br />FUSION</p><h1 id="ReservedKeywords-G">G</h1><p>GET<br />GLOBAL<br />GR
ANT<br />GROUP<br />GROUPING</p><h1 id="ReservedKeywords-H">H</h1><p>HAVING<br />HOLD<br />HOUR</p></td><td valign="top" class="confluenceTd"><h1 id="ReservedKeywords-I">I</h1><p>IDENTITY<br />IMPORT<br />IN<br />INDICATOR<br />INNER<br />INOUT<br />INSENSITIVE<br />INSERT<br />INT<br />INTEGER<br />INTERSECT<br />INTERSECTION<br />INTERVAL<br />INTO<br />IS</p><h1 id="ReservedKeywords-J">J</h1><p>JOIN</p><h1 id="ReservedKeywords-L">L</h1><p>LANGUAGE<br />LARGE<br />LAST_VALUE<br />LATERAL<br />LEADING<br />LEFT<br />LIKE<br />LIMIT<br />LN<br />LOCAL<br />LOCALTIME<br />LOCALTIMESTAMP<br />LOWER</p><h1 id="ReservedKeywords-M">M</h1><p>MATCH<br />MAX<br />MEMBER<br />MERGE<br />METHOD<br />MIN<br />MINUTE<br />MOD<br />MODIFIES<br />MODULE<br />MONTH<br />MULTISET</p><h1 id="ReservedKeywords-N">N</h1><p>NATIONAL<br />NATURAL<br />NCHAR<br />NCLOB<br />NEW<br />NO<br />NONE<br />NORMALIZE<br />NOT<br />NULL<br />NULLIF<br />NUMERIC</p><h1 id="ReservedKeywords-O">O</h1><p>OCTET_LENGTH
<br />OF<br />OFFSET<br />OLD<br />ON<br />ONLY<br />OPEN<br />OR<br />ORDER<br />OUT<br />OUTER<br />OVER<br />OVERLAPS<br />OVERLAY</p></td><td valign="top" colspan="1" class="confluenceTd"><h1 id="ReservedKeywords-P">P</h1><p>PARAMETER<br />PARTITION<br />PERCENTILE_CONT<br />PERCENTILE_DISC<br />PERCENT_RANK<br />POSITION<br />POWER<br />PRECISION<br />PREPARE<br />PRIMARY<br />PROCEDURE</p><h1 id="ReservedKeywords-R">R</h1><p>RANGE<br />RANK<br />READS<br />REAL<br />RECURSIVE<br />REF<br />REFERENCES<br />REFERENCING<br />REGR_AVGX<br />REGR_AVGY<br />REGR_COUNT<br />REGR_INTERCEPT<br />REGR_R2<br />REGR_SLOPE<br />REGR_SXX<br />REGR_SXY<br />RELEASE<br />REPLACE<br />RESULT<br />RETURN<br />RETURNS<br />REVOKE<br />RIGHT<br />ROLLBACK<br />ROLLUP<br />ROW<br />ROWS<br />ROW_NUMBER</p><h1 id="ReservedKeywords-S">S</h1><p>SAVEPOINT<br />SCHEMAS<br />SCOPE<br />SCROLL<br />SEARCH<br />SECOND<br />SELECT<br />SENSITIVE<br />SESSION_USER<br />SET<br />SHOW<br />SIMILAR<br />SMALLI
NT<br />SOME<br />SPECIFIC<br />SPECIFICTYPE<br />SQL<br />SQLEXCEPTION<br />SQLSTATE<br />SQLWARNING<br />SQRT<br />START<br />STATIC<br />STDDEV_POP<br />STDDEV_SAMP<br />SUBMULTISET<br />SUBSTRING<br />SUM<br />SYMMETRIC<br />SYSTEM<br />SYSTEM_USER</p></td><td valign="top" colspan="1" class="confluenceTd"><h1 id="ReservedKeywords-T">T</h1><p>TABLE<br />TABLES<br />TABLESAMPLE<br />THEN<br />TIME<br />TIMESTAMP<br />TIMEZONE_HOUR<br />TIMEZONE_MINUTE<br />TINYINT<br />TO<br />TRAILING<br />TRANSLATE<br />TRANSLATION<br />TREAT<br />TRIGGER<br />TRIM<br />TRUE</p><h1 id="ReservedKeywords-U">U</h1><p>UESCAPE<br />UNION<br />UNIQUE<br />UNKNOWN<br />UNNEST<br />UPDATE<br />UPPER<br />USE<br />USER<br />USING</p><h1 id="ReservedKeywords-V">V</h1><p>VALUE<br />VALUES<br />VARBINARY<br />VARCHAR<br />VARYING<br />VAR_POP<br />VAR_SAMP</p><h1 id="ReservedKeywords-W">W</h1><p>WHEN<br />WHENEVER<br />WHERE<br />WIDTH_BUCKET<br />WINDOW<br />WITH<br />WITHIN<br />WITHOUT</p><h1 id="Reserve
dKeywords-Y">Y</h1><p>YEAR</p></td></tr></tbody></table></div>
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/cmd-summary/001-create-table-as.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/cmd-summary/001-create-table-as.md b/_docs/drill-docs/sql-ref/cmd-summary/001-create-table-as.md
new file mode 100644
index 0000000..573c295
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/cmd-summary/001-create-table-as.md
@@ -0,0 +1,134 @@
+---
+title: "CREATE TABLE AS (CTAS) command"
+parent: "SQL Commands Summary"
+---
+You can create tables in Drill by using the CTAS command:
+
+ CREATE TABLE new_table_name AS <query>;
+
+where query is any valid Drill query. Each table you create must have a unique
+name. You can include an optional column list for the new table. For example:
+
+ create table logtable(transid, prodid) as select transaction_id, product_id from ...
+
+You can store table data in one of three formats:
+
+ * csv
+ * parquet
+ * json
+
+The parquet and json formats can be used to store complex data.
+
+To set the output format for a Drill table, set the `store.format` option with
+the ALTER SYSTEM or ALTER SESSION command. For example:
+
+ alter session set `store.format`='json';
+
+Table data is stored in the location specified by the workspace that is in use
+when you run the CTAS statement. By default, a directory is created, using the
+exact table name specified in the CTAS statement. A .json, .csv, or .parquet
+file inside that directory contains the data.
+
+You can only create new tables in workspaces. You cannot create tables in
+other storage plugins such as Hive and HBase.
+
+You must use a writable (mutable) workspace when creating Drill tables. For
+example:
+
+ "tmp": {
+ "location": "/tmp",
+ "writable": true,
+ }
+
+## Example
+
+The following query returns one row from a JSON file:
+
+ 0: jdbc:drill:zk=local> select id, type, name, ppu
+ from dfs.`/Users/brumsby/drill/donuts.json`;
+ +------------+------------+------------+------------+
+ | id | type | name | ppu |
+ +------------+------------+------------+------------+
+ | 0001 | donut | Cake | 0.55 |
+ +------------+------------+------------+------------+
+ 1 row selected (0.248 seconds)
+
+To create and verify the contents of a table that contains this row:
+
+ 1. Set the workspace to a writable workspace.
+ 2. Set the `store.format` option appropriately.
+ 3. Run a CTAS statement that contains the query.
+ 4. Go to the directory where the table is stored and check the contents of the file.
+ 5. Run a query against the new table.
+
+The following sqlline output captures this sequence of steps.
+
+### Workspace Definition
+
+ "tmp": {
+ "location": "/tmp",
+ "writable": true,
+ }
+
+### ALTER SESSION Command
+
+ alter session set `store.format`='json';
+
+### USE Command
+
+ 0: jdbc:drill:zk=local> use dfs.tmp;
+ +------------+------------+
+ | ok | summary |
+ +------------+------------+
+ | true | Default schema changed to 'dfs.tmp' |
+ +------------+------------+
+ 1 row selected (0.03 seconds)
+
+### CTAS Command
+
+ 0: jdbc:drill:zk=local> create table donuts_json as
+ select id, type, name, ppu from dfs.`/Users/brumsby/drill/donuts.json`;
+ +------------+---------------------------+
+ | Fragment | Number of records written |
+ +------------+---------------------------+
+ | 0_0 | 1 |
+ +------------+---------------------------+
+ 1 row selected (0.107 seconds)
+
+### File Contents
+
+ administorsmbp7:tmp brumsby$ pwd
+ /tmp
+ administorsmbp7:tmp brumsby$ cd donuts_json
+ administorsmbp7:donuts_json brumsby$ more 0_0_0.json
+ {
+ "id" : "0001",
+ "type" : "donut",
+ "name" : "Cake",
+ "ppu" : 0.55
+ }
+
+### Query Against New Table
+
+ 0: jdbc:drill:zk=local> select * from donuts_json;
+ +------------+------------+------------+------------+
+ | id | type | name | ppu |
+ +------------+------------+------------+------------+
+ | 0001 | donut | Cake | 0.55 |
+ +------------+------------+------------+------------+
+ 1 row selected (0.053 seconds)
+
+### Use a Different Output Format
+
+You can run the same sequence again with a different storage format set for
+the system or session (csv or parquet). For example, if the format is set to
+csv, and you name the table donuts_csv, the resulting file would look like
+this:
+
+ administorsmbp7:tmp brumsby$ cd donuts_csv
+ administorsmbp7:donuts_csv brumsby$ ls
+ 0_0_0.csv
+ administorsmbp7:donuts_csv brumsby$ more 0_0_0.csv
+ id,type,name,ppu
+ 0001,donut,Cake,0.55
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/cmd-summary/002-explain.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/cmd-summary/002-explain.md b/_docs/drill-docs/sql-ref/cmd-summary/002-explain.md
new file mode 100644
index 0000000..4ca0870
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/cmd-summary/002-explain.md
@@ -0,0 +1,166 @@
+---
+title: "EXPLAIN commands"
+parent: "SQL Commands Summary"
+---
+EXPLAIN is a useful tool for examining the steps that a query goes through
+when it is executed. You can use the EXPLAIN output to gain a deeper
+understanding of the parallel processing that Drill queries exploit. You can
+also look at costing information, troubleshoot performance issues, and
+diagnose routine errors that may occur when you run queries.
+
+Drill provides two variations on the EXPLAIN command, one that returns the
+physical plan and one that returns the logical plan. A logical plan takes the
+SQL query (as written by the user and accepted by the parser) and translates
+it into a logical series of operations that correspond to SQL language
+constructs (without defining the specific algorithms that will be implemented
+to run the query). A physical plan translates the logical plan into a specific
+series of steps that will be used when the query runs. For example, a logical
+plan may indicate a join step in general and classify it as inner or outer,
+but the corresponding physical plan will indicate the specific type of join
+operator that will run, such as a merge join or a hash join. The physical plan
+is operational and reveals the specific _access methods_ that will be used for
+the query.
+
+An EXPLAIN command for a query that is run repeatedly under the exact same
+conditions against the same data will return the same plan. However, if you
+change a configuration option, for example, or update the tables or files that
+you are selecting from, you are likely to see plan changes.
+
+# EXPLAIN Syntax
+
+The EXPLAIN command supports the following syntax:
+
+ explain plan [ including all attributes ] [ with implementation | without implementation ] for <query> ;
+
+where `query` is any valid SELECT statement supported by Drill.
+
+##### INCLUDING ALL ATTRIBUTES
+
+This option returns costing information. You can use this option for both
+physical and logical plans.
+
+#### WITH IMPLEMENTATION | WITHOUT IMPLEMENTATION
+
+These options return the physical and logical plan information, respectively.
+The default is physical (WITH IMPLEMENTATION).
+
+# EXPLAIN for Physical Plans
+
+The EXPLAIN PLAN FOR <query> command returns the chosen physical execution
+plan for a query statement without running the query. You can use this command
+to see what kind of execution operators Drill implements. For example, you can
+find out what kind of join algorithm is chosen when tables or files are
+joined. You can also use this command to analyze errors and troubleshoot
+queries that do not run. For example, if you run into a casting error, the
+query plan text may help you isolate the problem.
+
+Use the following syntax:
+
+ explain plan for <query> ;
+ explain plan with implementation for <query> ;
+
+The following set command increases the default text display (number of
+characters). By default, most of the plan output is not displayed.
+
+ 0: jdbc:drill:zk=local> !set maxwidth 10000
+
+Do not use a semicolon to terminate set commands.
+
+For example, here is the top portion of the explain output for a
+COUNT(DISTINCT) query on a JSON file:
+
+ 0: jdbc:drill:zk=local> !set maxwidth 10000
+
+ 0: jdbc:drill:zk=local> explain plan for
+ select type t, count(distinct id)
+ from dfs.`/Users/brumsby/drill/donuts.json`
+ where type='donut' group by type;
+
+ +------------+------------+
+ | text | json |
+ +------------+------------+
+ | 00-00 Screen
+ 00-01 Project(t=[$0], EXPR$1=[$1])
+ 00-02 Project(t=[$0], EXPR$1=[$1])
+ 00-03 HashAgg(group=[{0}], EXPR$1=[COUNT($1)])
+ 00-04 HashAgg(group=[{0, 1}])
+ 00-05 SelectionVectorRemover
+ 00-06 Filter(condition=[=(CAST($0):CHAR(5) CHARACTER SET "ISO-8859-1" COLLATE "ISO-8859-1$en_US$primary", 'donut')])
+ 00-07 Project(type=[$1], id=[$2])
+ 00-08 ProducerConsumer
+ 00-09 Scan(groupscan=[EasyGroupScan [selectionRoot=/Users/brumsby/drill/donuts.json, columns = null]])
+ ...
+
+Read the text output from bottom to top to understand the sequence of
+operators that will execute the query. Note that the physical plan starts with
+a scan of the JSON file that is being queried. The selected columns are
+projected and filtered, then the aggregate function is applied.
+
+The EXPLAIN text output is followed by detailed JSON output, which is reusable
+for submitting the query via Drill APIs.
+
+ | {
+ "head" : {
+ "version" : 1,
+ "generator" : {
+ "type" : "ExplainHandler",
+ "info" : ""
+ },
+ "type" : "APACHE_DRILL_PHYSICAL",
+ "options" : [ ],
+ "queue" : 0,
+ "resultMode" : "EXEC"
+ },
+ ....
+
+# Costing Information
+
+Add the INCLUDING ALL ATTRIBUTES option to the EXPLAIN command to see cost
+estimates for the query plan. For example:
+
+ 0: jdbc:drill:zk=local> !set maxwidth 10000
+ 0: jdbc:drill:zk=local> explain plan including all attributes for
+ select * from dfs.`/Users/brumsby/drill/donuts.json` where type='donut';
+
+ +------------+------------+
+ | text | json |
+ +------------+------------+
+
+ | 00-00 Screen: rowcount = 1.0, cumulative cost = {4.1 rows, 14.1 cpu, 0.0 io, 0.0 network}, id = 3110
+ 00-01 Project(*=[$0], type=[$1]): rowcount = 1.0, cumulative cost = {4.0 rows, 14.0 cpu, 0.0 io, 0.0 network}, id = 3109
+ 00-02 SelectionVectorRemover: rowcount = 1.0, cumulative cost = {3.0 rows, 6.0 cpu, 0.0 io, 0.0 network}, id = 3108
+ 00-03 Filter(condition=[=(CAST($1):CHAR(5) CHARACTER SET "ISO-8859-1" COLLATE "ISO-8859-1$en_US$primary", 'donut')]): rowcount = 1.0, cumulative cost = {2.0 rows, 5.0 cpu, 0.0 io, 0.0 network}, id = 3107
+ 00-04 ProducerConsumer: rowcount = 1.0, cumulative cost = {1.0 rows, 1.0 cpu, 0.0 io, 0.0 network}, id = 3106
+ 00-05 Scan(groupscan=[EasyGroupScan [selectionRoot=/Users/brumsby/drill/donuts.json, columns = null]]): rowcount = 1.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io, 0.0 network}, id = 3101
+
+# EXPLAIN for Logical Plans
+
+To return the logical plan for a query (again, without actually running the
+query), use the EXPLAIN PLAN WITHOUT IMPLEMENTATION syntax:
+
+ explain plan without implementation for <query> ;
+
+For example:
+
+ 0: jdbc:drill:zk=local> explain plan without implementation for
+ select a.id
+ from dfs.`/Users/brumsby/drill/donuts.json` a, dfs.`/Users/brumsby/drill/moredonuts.json` b
+ where a.id=b.id;
+
+ +------------+------------+
+ | text | json |
+ +------------+------------+
+ | DrillScreenRel
+ DrillProjectRel(id=[$1])
+ DrillJoinRel(condition=[=($1, $3)], joinType=[inner])
+ DrillScanRel(table=[[dfs, /Users/brumsby/drill/donuts.json]], groupscan=[EasyGroupScan [selectionRoot=/Users/brumsby/drill/donuts.json, columns = null]])
+ DrillScanRel(table=[[dfs, /Users/brumsby/drill/moredonuts.json]], groupscan=[EasyGroupScan [selectionRoot=/Users/brumsby/drill/moredonuts.json, columns = null]])
+ | {
+ "head" : {
+ "version" : 1,
+ "generator" : {
+ "type" : "org.apache.drill.exec.planner.logical.DrillImplementor",
+ "info" : ""
+ },
+ ...
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/cmd-summary/003-select.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/cmd-summary/003-select.md b/_docs/drill-docs/sql-ref/cmd-summary/003-select.md
new file mode 100644
index 0000000..57fc0cf
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/cmd-summary/003-select.md
@@ -0,0 +1,85 @@
+---
+title: "SELECT Statements"
+parent: "SQL Commands Summary"
+---
+Drill supports the following ANSI standard clauses in the SELECT statement:
+
+ * WITH clause
+ * SELECT list
+ * FROM clause
+ * WHERE clause
+ * GROUP BY clause
+ * HAVING clause
+ * ORDER BY clause (with an optional LIMIT clause)
+
+You can use the same SELECT syntax in the following commands:
+
+ * CREATE TABLE AS (CTAS)
+ * CREATE VIEW
+
+INSERT INTO SELECT is not yet supported.
+
+# Column Aliases
+
+You can use named column aliases in the SELECT list to provide meaningful
+names for regular columns and computed columns, such as the results of
+aggregate functions. See the section on running queries for examples.
+
+You cannot reference column aliases in the following clauses:
+
+ * WHERE
+ * GROUP BY
+ * HAVING
+
+Because Drill works with schema-less data sources, you cannot use positional
+aliases (1, 2, etc.) to refer to SELECT list columns, except in the ORDER BY
+clause.
+
+# UNION ALL Set Operator
+
+Drill supports the UNION ALL set operator to combine two result sets. The
+distinct UNION operator is not yet supported.
+
+The EXCEPT, EXCEPT ALL, INTERSECT, and INTERSECT ALL operators are not yet
+supported.
+
+# Joins
+
+Drill supports ANSI standard joins in the FROM and WHERE clauses:
+
+ * Inner joins
+ * Left, full, and right outer joins
+
+The following types of join syntax are supported:
+
+Join type| Syntax
+---|---
+Join condition in WHERE clause|FROM table1, table 2 WHERE table1.col1=table2.col1
+USING join in FROM clause|FROM table1 JOIN table2 USING(col1, ...)
+ON join in FROM clause|FROM table1 JOIN table2 ON table1.col1=table2.col1
+NATURAL JOIN in FROM clause|FROM table 1 NATURAL JOIN table 2
+
+Cross-joins are not yet supported. You must specify a join condition when more
+than one table is listed in the FROM clause.
+
+Non-equijoins are supported if the join also contains an equality condition on
+the same two tables as part of a conjunction:
+
+ table1.col1 = table2.col1 AND table1.c2 < table2.c2
+
+This restriction applies to both inner and outer joins.
+
+# Subqueries
+
+You can use the following subquery operators in Drill queries. These operators
+all return Boolean results.
+
+ * ALL
+ * ANY
+ * EXISTS
+ * IN
+ * SOME
+
+In general, correlated subqueries are supported. EXISTS and NOT EXISTS
+subqueries that do not contain a correlation join are not yet supported.
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/cmd-summary/004-show-files.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/cmd-summary/004-show-files.md b/_docs/drill-docs/sql-ref/cmd-summary/004-show-files.md
new file mode 100644
index 0000000..d0f5a83
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/cmd-summary/004-show-files.md
@@ -0,0 +1,65 @@
+---
+title: "SHOW FILES Command"
+parent: "SQL Commands Summary"
+---
+The SHOW FILES command provides a quick report of the file systems that are
+visible to Drill for query purposes. This command is unique to Apache Drill.
+
+# Syntax
+
+The SHOW FILES command supports the following syntax.
+
+ SHOW FILES [ FROM filesystem.directory_name | IN filesystem.directory_name ];
+
+The FROM or IN clause is required if you do not specify a default file system
+first. You can do this with the USE command. FROM and IN are synonyms.
+
+The directory name is optional. (If the directory name is a Drill reserved
+word, you must use back ticks around the name.)
+
+The command returns standard Linux `stat` information for each file or
+directory, such as permissions, owner, and group values. This information is
+not specific to Drill.
+
+# Examples
+
+The following example returns information about directories and files in the
+local (`dfs`) file system.
+
+ 0: jdbc:drill:> use dfs;
+
+ +------------+------------+
+ | ok | summary |
+ +------------+------------+
+ | true | Default schema changed to 'dfs' |
+ +------------+------------+
+ 1 row selected (0.318 seconds)
+
+ 0: jdbc:drill:> show files;
+ +------------+-------------+------------+------------+------------+------------+-------------+------------+------------------+
+ | name | isDirectory | isFile | length | owner | group | permissions | accessTime | modificationTime |
+ +------------+-------------+------------+------------+------------+------------+-------------+------------+------------------+
+ | user | true | false | 1 | mapr | mapr | rwxr-xr-x | 2014-07-30 21:37:06.0 | 2014-07-31 22:15:53.193 |
+ | backup.tgz | false | true | 36272 | root | root | rw-r--r-- | 2014-07-31 22:09:13.0 | 2014-07-31 22:09:13.211 |
+ | JSON | true | false | 1 | root | root | rwxr-xr-x | 2014-07-31 15:22:42.0 | 2014-08-04 15:43:07.083 |
+ | scripts | true | false | 3 | root | root | rwxr-xr-x | 2014-07-31 22:10:51.0 | 2014-08-04 18:23:09.236 |
+ | temp | true | false | 2 | root | root | rwxr-xr-x | 2014-08-01 20:07:37.0 | 2014-08-01 20:09:42.595 |
+ | hbase | true | false | 10 | mapr | mapr | rwxr-xr-x | 2014-07-30 21:36:08.0 | 2014-08-04 18:31:13.778 |
+ | tables | true | false | 0 | root | root | rwxrwxrwx | 2014-07-31 22:14:35.0 | 2014-08-04 15:42:43.415 |
+ | CSV | true | false | 4 | root | root | rwxrwxrwx | 2014-07-31 17:34:53.0 | 2014-08-04
+ ...
+
+The following example shows the files in a specific directory in the `dfs`
+file system:
+
+ 0: jdbc:drill:> show files in dfs.CSV;
+
+ +------------+-------------+------------+------------+------------+------------+-------------+------------+------------------+
+ | name | isDirectory | isFile | length | owner | group | permissions | accessTime | modificationTime |
+ +------------+-------------+------------+------------+------------+------------+-------------+------------+------------------+
+ | customers.csv | false | true | 62011 | root | root | rw-r--r-- | 2014-08-04 18:30:39.0 | 2014-08-04 18:30:39.314 |
+ | products.csv.small | false | true | 34972 | root | root | rw-r--r-- | 2014-07-31 23:58:42.0 | 2014-07-31 23:59:16.849 |
+ | products.csv | false | true | 34972 | root | root | rw-r--r-- | 2014-08-01 06:39:34.0 | 2014-08-04 15:58:09.325 |
+ | products.csv.bad | false | true | 62307 | root | root | rw-r--r-- | 2014-08-04 15:58:02.0 | 2014-08-04 15:58:02.612 |
+ +------------+-------------+------------+------------+------------+------------+-------------+------------+------------------+
+ 4 rows selected (0.165 seconds)
\ No newline at end of file
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/data-types/001-date.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/data-types/001-date.md b/_docs/drill-docs/sql-ref/data-types/001-date.md
new file mode 100644
index 0000000..8bf4230
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/data-types/001-date.md
@@ -0,0 +1,148 @@
+---
+title: "Supported Date/Time Data Type Formats"
+parent: "Data Types"
+---
+You must use supported `date` and `time` formats when you `SELECT` date and
+time literals or when you `CAST()` from `VARCHAR `to `date` and `time` data
+types. Apache Drill currently supports specific formats for the following
+`date` and `time` data types:
+
+ * Date
+ * Timestamp
+ * Time
+ * Interval
+ * Interval Year
+ * Interval Day
+ * Literal
+
+The following query provides an example of how to `SELECT` a few of the
+supported date and time formats as literals:
+
+ select date '2008-2-23', timestamp '2008-1-23 14:24:23', time '10:20:30' from dfs.`/tmp/input.json`;
+
+The following query provides an example where `VARCHAR` data in a file is
+`CAST()` to supported `date `and `time` formats:
+
+ select cast(col_A as date), cast(col_B as timestamp), cast(col_C as time) from dfs.`/tmp/dates.json`;
+
+`Date`, t`imestamp`, and` time` data types store values in `UTC`. Currently,
+Apache Drill does not support `timestamp` with time zone.
+
+## Date
+
+Drill supports the `date` data type in the following format:
+
+ YYYY-MM-DD (year-month-date)
+
+The following table provides some examples for the `date` data type:
+
+ | Use | Example |
+ | --- | ------- |
+ |Literal| `select date ‘2008-2-23’ from dfs.`/tmp/input.json`;`|
+ |`JSON` input | `{"date_col" : "2008-2-23"}
+ | `CAST` from `VARCHAR`| `` select CAST(date_col as date) as CAST_DATE from dfs.`/tmp/input.json`; ``|
+
+## Timestamp
+
+Drill supports the `timestamp` data type in the following format:
+
+ yyyy-MM-dd HH:mm:ss.SSS (year-month-date hour:minute:sec.milliseconds)
+
+The following table provides some examples for the `timestamp` data type:
+
+<table>
+ <tbody>
+ <tr>
+ <th>Use</th>
+ <th>CAST Example</th>
+ </tr>
+ <tr>
+ <td valign="top">Literal</td>
+ <td valign="top"><code><span style="color: rgb(0,0,0);">select timestamp ‘2008-2-23 10:20:30.345’, timestamp ‘2008-2-23 10:20:30’ from dfs.`/tmp/input.json`;</span></code>
+ </td></tr>
+ <tr>
+ <td colspan="1" valign="top"><code>JSON</code> Input</td>
+ <td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">{“timestamp_col”: “2008-2-23 15:20:30.345”}<br /></span><span style="color: rgb(0,0,0);">{“timestamp_col”: “2008-2-23 10:20:30”}</span></code><span style="color: rgb(0,0,0);">The fractional millisecond component is optional.</span></td>
+ </tr>
+ <tr>
+ <td colspan="1" valign="top"><code>CAST</code> from <code>VARCHAR</code></td>
+ <td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">select cast(timestamp_col as timestamp) from dfs.`/tmp/input.json`; </span></code></td>
+ </tr>
+ </tbody>
+ </table>
+
+## Time
+
+Drill supports the `time` data type in the following format:
+
+ HH:mm:ss.SSS (hour:minute:sec.milliseconds)
+
+The following table provides some examples for the` time` data type:
+
+<table><tbody><tr>
+ <th>Use</th>
+ <th>Example</th>
+ </tr>
+ <tr>
+ <td valign="top">Literal</td>
+ <td valign="top"><code><span style="color: rgb(0,0,0);">select time ‘15:20:30’, time ‘10:20:30.123’ from dfs.`/tmp/input.json`;</span></code></td>
+ </tr>
+ <tr>
+ <td colspan="1" valign="top"><code>JSON</code> Input</td>
+ <td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">{“time_col” : “10:20:30.999”}<br /></span><span style="color: rgb(0,0,0);">{“time_col”: “10:20:30”}</span></code></td>
+ </tr>
+ <tr>
+ <td colspan="1" valign="top"><code>CAST</code> from <code>VARCHAR</code></td>
+ <td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">select cast(time_col as time) from dfs.`/tmp/input.json`;</span></code></td>
+</tr></tbody>
+</table>
+
+## Interval
+
+Drill supports the `interval year` and `interval day` data types.
+
+### Interval Year
+
+The `interval year` data type stores time duration in years and months. Drill
+supports the `interval` data type in the following format:
+
+ P [qty] Y [qty] M
+
+The following table provides examples for `interval year `data type:
+
+<table ><tbody><tr>
+<th>Use</th>
+<th>Example</th></tr>
+ <tr>
+ <td valign="top">Literals</td>
+ <td valign="top"><code><span style="color: rgb(0,0,0);">select interval ‘1-2’ year to month from dfs.`/tmp/input.json`;<br /></span><span style="color: rgb(0,0,0);">select interval ‘1’ year from dfs.`/tmp/input.json`;<br /></span><span style="color: rgb(0,0,0);">select interval '13’ month from dfs.`/tmp/input.json`;</span></code></td></tr><tr>
+ <td colspan="1" valign="top"><code>JSON</code> Input</td>
+ <td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">{“col” : “P1Y2M”}<br /></span><span style="color: rgb(0,0,0);">{“col” : “P-1Y2M”}<br /></span><span style="color: rgb(0,0,0);">{“col” : “P-1Y-2M”}<br /></span><span style="color: rgb(0,0,0);">{“col”: “P10M”}<br /></span><span style="color: rgb(0,0,0);">{“col”: “P5Y”}</span></code></td>
+ </tr>
+ <tr>
+ <td colspan="1" valign="top"><code>CAST</code> from <code>VARCHAR</code></td>
+ <td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">select cast(col as interval year) from dfs.`/tmp/input.json`;</span></code></td>
+ </tr>
+ </tbody></table>
+
+### Interval Day
+
+The `interval day` data type stores time duration in days, hours, minutes, and
+seconds. You do not need to specify all fields in a given interval. Drill
+supports the `interval day` data type in the following format:
+
+ P [qty] D T [qty] H [qty] M [qty] S
+
+The following table provides examples for `interval day` data type:
+
+<div class="table-wrap"><table class="confluenceTable"><tbody><tr><th class="confluenceTh">Use</th><th class="confluenceTh">Example</th></tr><tr><td valign="top">Literal</td><td valign="top"><code><span style="color: rgb(0,0,0);">select interval '1 10:20:30.123' day to second from dfs.`/tmp/input.json`;<br /></span><span style="color: rgb(0,0,0);">select interval '1 10' day to hour from dfs.`/tmp/input.json`;<br /></span><span style="color: rgb(0,0,0);">select interval '10' day from dfs.`/tmp/input.json`;<br /></span><span style="color: rgb(0,0,0);">select interval '10' hour from dfs.`/tmp/input.json`;</span></code><code><span style="color: rgb(0,0,0);">select interval '10.999' second from dfs.`/tmp/input.json`;</span></code></td></tr><tr><td colspan="1" valign="top"><code>JSON</code> Input</td><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">{"col" : "P1DT10H20M30S"}<br /></span><span style="color: rgb(0,0,0);">{"col" : "P1DT
10H20M30.123S"}<br /></span><span style="color: rgb(0,0,0);">{"col" : "P1D"}<br /></span><span style="color: rgb(0,0,0);">{"col" : "PT10H"}<br /></span><span style="color: rgb(0,0,0);">{"col" : "PT10.10S"}<br /></span><span style="color: rgb(0,0,0);">{"col" : "PT20S"}<br /></span><span style="color: rgb(0,0,0);">{"col" : "PT10H10S"}</span></code></td></tr><tr><td colspan="1" valign="top"><code>CAST</code> from <code>VARCHAR</code></td><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">select cast(col as interval day) from dfs.`/tmp/input.json`;</span></code></td></tr></tbody></table></div>
+
+## Literal
+
+The following table provides a list of` date/time` literals that Drill
+supports with examples of each:
+
+<div class="table-wrap"><table class="confluenceTable"><tbody><tr><th class="confluenceTh">Format</th><th colspan="1" class="confluenceTh">Interpretation</th><th class="confluenceTh">Example</th></tr><tr><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">interval '1 10:20:30.123' day to second</span></code></td><td colspan="1" valign="top"><code>1 day, 10 hours, 20 minutes, 30 seconds, and 123 thousandths of a second</code></td><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">select interval '1 10:20:30.123' day to second from dfs.`/tmp/input.json`;</span></code></td></tr><tr><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">interval '1 10' day to hour</span></code></td><td colspan="1" valign="top"><code>1 day 10 hours</code></td><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">select interval '1 10' day to hour from dfs.`/tmp/input.json`;</span></code></td></tr><tr><td colspan="1" valign="top"><code><span styl
e="color: rgb(0,0,0);">interval '10' day</span></code></td><td colspan="1" valign="top"><code>10 days</code></td><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">select interval '10' day from dfs.`/tmp/input.json`;</span></code></td></tr><tr><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">interval '10' hour</span></code></td><td colspan="1" valign="top"><code>10 hours</code></td><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">select interval '10' hour from dfs.`/tmp/input.json`;</span></code></td></tr><tr><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">interval '10.999' second</span></code></td><td colspan="1" valign="top"><code>10.999 seconds</code></td><td colspan="1" valign="top"><code><span style="color: rgb(0,0,0);">select interval '10.999' second from dfs.`/tmp/input.json`; </span></code></td></tr></tbody></table></div>
+
+
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/nested/001-flatten.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/nested/001-flatten.md b/_docs/drill-docs/sql-ref/nested/001-flatten.md
new file mode 100644
index 0000000..124db91
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/nested/001-flatten.md
@@ -0,0 +1,89 @@
+---
+title: "FLATTEN Function"
+parent: "Nested Data Functions"
+---
+The FLATTEN function is useful for flexible exploration of repeated data.
+FLATTEN separates the elements in a repeated field into individual records. To
+maintain the association between each flattened value and the other fields in
+the record, all of the other columns are copied into each new record. A very
+simple example would turn this data (one record):
+
+ {
+ "x" : 5,
+ "y" : "a string",
+ "z" : [ 1,2,3]
+ }
+
+into three distinct records:
+
+ select flatten(z) from table;
+ | x | y | z |
+ +-------------+----------------+-----------+
+ | 5 | "a string" | 1 |
+ | 5 | "a string" | 2 |
+ | 5 | "a string" | 3 |
+
+The function takes a single argument, which must be an array (the `z` column
+in this example).
+
+
+
+For a more interesting example, consider the JSON data in the publicly
+available [Yelp](https://www.yelp.com/dataset_challenge/dataset) data set. The
+first query below returns three columns from the
+`yelp_academic_dataset_business.json` file: `name`, `hours`, and `categories`.
+The query is restricted to distinct rows where the name is `z``pizza`. The
+query returns only one row that meets those criteria; however, note that this
+row contains an array of four categories:
+
+ 0: jdbc:drill:zk=local> select distinct name, hours, categories
+ from dfs.yelp.`yelp_academic_dataset_business.json`
+ where name ='zpizza';
+ +------------+------------+------------+
+ | name | hours | categories |
+ +------------+------------+------------+
+ | zpizza | {"Tuesday":{"close":"22:00","open":"10:00"},"Friday":{"close":"23:00","open":"10:00"},"Monday":{"close":"22:00","open":"10:00"},"Wednesday":{"close":"22:00","open":"10:00"},"Thursday":{"close":"22:00","open":"10:00"},"Sunday":{"close":"22:00","open":"10:00"},"Saturday":{"close":"23:00","open":"10:00"}} | ["Gluten-Free","Pizza","Vegan","Restaurants"] |
+
+The FLATTEN function can operate on this single row and return multiple rows,
+one for each category:
+
+ 0: jdbc:drill:zk=local> select distinct name, flatten(categories) as categories
+ from dfs.yelp.`yelp_academic_dataset_business.json`
+ where name ='zpizza' order by 2;
+ +------------+-------------+
+ | name | categories |
+ +------------+-------------+
+ | zpizza | Gluten-Free |
+ | zpizza | Pizza |
+ | zpizza | Restaurants |
+ | zpizza | Vegan |
+ +------------+-------------+
+ 4 rows selected (2.797 seconds)
+
+Having used the FLATTEN function to break down arrays into distinct rows, you
+can run queries that do deeper analysis on the flattened result set. For
+example, you can use FLATTEN in a subquery, then apply WHERE clause
+constraints or aggregate functions to the results in the outer query.
+
+The following query uses the same data file as the previous query to flatten
+the categories array, then run a COUNT function on the flattened result:
+
+ select celltbl.catl, count(celltbl.catl) catcount
+ from (select flatten(categories) catl
+ from dfs.yelp.`yelp_academic_dataset_business.json`) celltbl
+ group by celltbl.catl
+ order by count(celltbl.catl) desc limit 5;
+
+ +---------------+------------+
+ | catl | catcount |
+ +---------------+------------+
+ | Restaurants | 14303 |
+ | Shopping | 6428 |
+ | Food | 5209 |
+ | Beauty & Spas | 3421 |
+ | Nightlife | 2870 |
+ +---------------|------------+
+
+A common use case for FLATTEN is its use in conjunction with the
+[KVGEN](/confluence/display/DRILL/KVGEN+Function) function.
+
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/nested/002-kvgen.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/nested/002-kvgen.md b/_docs/drill-docs/sql-ref/nested/002-kvgen.md
new file mode 100644
index 0000000..a27a781
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/nested/002-kvgen.md
@@ -0,0 +1,150 @@
+---
+title: "KVGEN Function"
+parent: "Nested Data Functions"
+---
+KVGEN stands for _key-value generation_. This function is useful when complex
+data files contain arbitrary maps that consist of relatively "unknown" column
+names. Instead of having to specify columns in the map to access the data, you
+can use KVGEN to return a list of the keys that exist in the map. KVGEN turns
+a map with a wide set of columns into an array of key-value pairs.
+
+In turn, you can write analytic queries that return a subset of the generated
+keys or constrain the keys in some way. For example, you can use the
+[FLATTEN](/confluence/display/DRILL/FLATTEN+Function) function to break the
+array down into multiple distinct rows and further query those rows.
+
+
+
+For example, assume that a JSON file contains this data:
+
+ {"a": "valA", "b": "valB"}
+ {"c": "valC", "d": "valD"}
+
+
+KVGEN would operate on this data to generate:
+
+ [{"key": "a", "value": "valA"}, {"key": "b", "value": "valB"}]
+ [{"key": "c", "value": "valC"}, {"key": "d", "value": "valD"}]
+
+Applying the [FLATTEN](/confluence/display/DRILL/FLATTEN+Function) function to
+this data would return:
+
+ {"key": "a", "value": "valA"}
+ {"key": "b", "value": "valB"}
+ {"key": "c", "value": "valC"}
+ {"key": "d", "value": "valD"}
+
+Assume that a JSON file called `kvgendata.json` includes multiple records that
+look like this one:
+
+ {
+ "rownum": 1,
+ "bigintegercol": {
+ "int_1": 1,
+ "int_2": 2,
+ "int_3": 3
+ },
+ "varcharcol": {
+ "varchar_1": "abc",
+ "varchar_2": "def",
+ "varchar_3": "xyz"
+ },
+ "boolcol": {
+ "boolean_1": true,
+ "boolean_2": false,
+ "boolean_3": true
+ },
+ "float8col": {
+ "f8_1": 1.1,
+ "f8_2": 2.2
+ },
+ "complex": [
+ {
+ "col1": 3
+ },
+ {
+ "col2": 2,
+ "col3": 1
+ },
+ {
+ "col1": 7
+ }
+ ]
+ }
+
+ {
+ "rownum": 3,
+ "bigintegercol": {
+ "int_1": 1,
+ "int_3": 3
+ },
+ "varcharcol": {
+ "varchar_1": "abcde",
+ "varchar_2": null,
+ "varchar_3": "xyz",
+ "varchar_4": "xyz2"
+ },
+ "boolcol": {
+ "boolean_1": true,
+ "boolean_2": false
+ },
+ "float8col": {
+ "f8_1": 1.1,
+ "f8_3": 6.6
+ },
+ "complex": [
+ {
+ "col1": 2,
+ "col3": 1
+ }
+ ]
+ }
+ ...
+
+
+A SELECT * query against this specific record returns the following row:
+
+ 0: jdbc:drill:zk=local> select * from dfs.yelp.`kvgendata.json` where rownum=1;
+
+ +------------+---------------+------------+------------+------------+------------+
+ | rownum | bigintegercol | varcharcol | boolcol | float8col | complex |
+ +------------+---------------+------------+------------+------------+------------+
+ | 1 | {"int_1":1,"int_2":2,"int_3":3} | {"varchar_1":"abc","varchar_2":"def","varchar_3":"xyz"} | {"boolean_1":true,"boolean_2":false,"boolean_3":true} | {"f8_1":1.1,"f8_2":2.2} | [{"col1":3},{"col2":2,"col3":1},{"col1":7}] |
+ +------------+---------------+------------+------------+------------+------------+
+ 1 row selected (0.122 seconds)
+
+You can use the KVGEN function to turn the maps in this data into key-value
+pairs. For example:
+
+ 0: jdbc:drill:zk=local> select kvgen(varcharcol) from dfs.yelp.`kvgendata.json`;
+ +------------+
+ | EXPR$0 |
+ +------------+
+ | [{"key":"varchar_1","value":"abc"},{"key":"varchar_2","value":"def"},{"key":"varchar_3","value":"xyz"}] |
+ | [{"key":"varchar_1","value":"abcd"}] |
+ | [{"key":"varchar_1","value":"abcde"},{"key":"varchar_3","value":"xyz"},{"key":"varchar_4","value":"xyz2"}] |
+ | [{"key":"varchar_1","value":"abc"},{"key":"varchar_2","value":"def"}] |
+ +------------+
+ 4 rows selected (0.091 seconds)
+
+Now you can apply the FLATTEN function to break out the key-value pairs into
+distinct rows:
+
+ 0: jdbc:drill:zk=local> select flatten(kvgen(varcharcol)) from dfs.yelp.`kvgendata.json`;
+ +------------+
+ | EXPR$0 |
+ +------------+
+ | {"key":"varchar_1","value":"abc"} |
+ | {"key":"varchar_2","value":"def"} |
+ | {"key":"varchar_3","value":"xyz"} |
+ | {"key":"varchar_1","value":"abcd"} |
+ | {"key":"varchar_1","value":"abcde"} |
+ | {"key":"varchar_3","value":"xyz"} |
+ | {"key":"varchar_4","value":"xyz2"} |
+ | {"key":"varchar_1","value":"abc"} |
+ | {"key":"varchar_2","value":"def"} |
+ +------------+
+ 9 rows selected (0.151 seconds)
+
+See the description of [FLATTEN](/confluence/display/DRILL/FLATTEN+Function)
+for an example of a query against the flattened data.
\ No newline at end of file
http://git-wip-us.apache.org/repos/asf/drill/blob/84b7b36d/_docs/drill-docs/sql-ref/nested/003-repeated-cnt.md
----------------------------------------------------------------------
diff --git a/_docs/drill-docs/sql-ref/nested/003-repeated-cnt.md b/_docs/drill-docs/sql-ref/nested/003-repeated-cnt.md
new file mode 100644
index 0000000..a66075c
--- /dev/null
+++ b/_docs/drill-docs/sql-ref/nested/003-repeated-cnt.md
@@ -0,0 +1,34 @@
+---
+title: "REPEATED_COUNT Function"
+parent: "Nested Data Functions"
+---
+This function counts the values in an array. The following example returns the
+counts for the `categories` array in the `yelp_academic_dataset_business.json`
+file. The counts are restricted to rows that contain the string `pizza`.
+
+ SELECT name, REPEATED_COUNT(categories)
+ FROM dfs.yelp.`yelp_academic_dataset_business.json`
+ WHERE name LIKE '%pizza%';
+
+ +---------------+------------+
+ | name | EXPR$1 |
+ +---------------+------------+
+ | Villapizza | 2 |
+ | zpizza | 4 |
+ | zpizza | 4 |
+ | Luckys pizza | 2 |
+ | Zpizza | 2 |
+ | S2pizzabar | 4 |
+ | Dominos pizza | 5 |
+ +---------------+------------+
+
+ 7 rows selected (2.03 seconds)
+
+The function requires a single argument, which must be an array. Note that
+this function is not a standard SQL aggregate function and does not require
+the count to be grouped by other columns in the select list (such as `name` in
+this example).
+
+For another example of this function, see the following lesson in the Apache
+Drill Tutorial for Hadoop: [Lesson 3: Run Queries on Complex Data Types](/conf
+luence/display/DRILL/Lesson+3%3A+Run+Queries+on+Complex+Data+Types).
\ No newline at end of file
|