flink-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From thvasilo <...@git.apache.org>
Subject [GitHub] flink pull request: [FLINK-1745] [ml] [WIP] Add exact k-nearest-ne...
Date Mon, 06 Jul 2015 09:11:07 GMT
Github user thvasilo commented on a diff in the pull request:

    https://github.com/apache/flink/pull/696#discussion_r33916882
  
    --- Diff: flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/KNN.scala
---
    @@ -0,0 +1,204 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.ml.classification
    +
    +import org.apache.flink.api.common.operators.Order
    +import org.apache.flink.api.common.typeinfo.TypeInformation
    +import org.apache.flink.api.scala.DataSetUtils._
    +import org.apache.flink.api.scala._
    +import org.apache.flink.ml.common._
    +import org.apache.flink.ml.math.Vector
    +import org.apache.flink.ml.metrics.distances.{DistanceMetric, EuclideanDistanceMetric}
    +import org.apache.flink.ml.pipeline.{FitOperation, PredictDataSetOperation, Predictor}
    +import org.apache.flink.util.Collector
    +
    +import scala.collection.mutable.ArrayBuffer
    +import scala.reflect.ClassTag
    +
    +/** Implements a k-nearest neighbor join.
    +  *
    +  * This algorithm calculates `k` nearest neighbor points in training set for each points
of
    +  * testing set.
    +  *
    +  * @example
    +  * {{{
    +  *     val trainingDS: DataSet[Vector] = ...
    +  *     val testingDS: DataSet[Vector] = ...
    +  *
    +  *     val knn = KNN()
    +  *       .setK(10)
    +  *       .setBlocks(5)
    +  *       .setDistanceMetric(EuclideanDistanceMetric())
    +  *
    +  *     knn.fit(trainingDS)
    +  *
    +  *     val predictionDS: DataSet[(Vector, Array[Vector])] = knn.predict(testingDS)
    +  * }}}
    +  *
    +  * =Parameters=
    +  *
    +  * - [[org.apache.flink.ml.classification.KNN.K]]
    +  * Sets the K which is the number of selected points as neighbors. (Default value: '''None''')
    +  *
    +  * - [[org.apache.flink.ml.classification.KNN.Blocks]]
    +  * Sets the number of blocks into which the input data will be split. This number should
be set
    +  * at least to the degree of parallelism. If no value is specified, then the parallelism
of the
    +  * input [[DataSet]] is used as the number of blocks. (Default value: '''None''')
    +  *
    +  * - [[org.apache.flink.ml.classification.KNN.DistanceMetric]]
    +  * Sets the distance metric to calculate distance between two points. If no metric is
specified,
    +  * then [[org.apache.flink.ml.metrics.distances.EuclideanDistanceMetric]] is used. (Default
value:
    +  * '''EuclideanDistanceMetric()''')
    +  *
    +  */
    +class KNN extends Predictor[KNN] {
    +
    +  import KNN._
    +
    +  var trainingSet: Option[DataSet[Block[Vector]]] = None
    +
    +  /** Sets K
    +    * @param k the number of selected points as neighbors
    +    */
    +  def setK(k: Int): KNN = {
    +    require(k > 1, "K must be positive.")
    +    parameters.add(K, k)
    +    this
    +  }
    +
    +  /** Sets the distance metric
    +    * @param metric the distance metric to calculate distance between two points
    +    */
    +  def setDistanceMetric(metric: DistanceMetric): KNN = {
    +    parameters.add(DistanceMetric, metric)
    +    this
    +  }
    +
    +  /** Sets the number of data blocks/partitions
    +    * @param n the number of data blocks
    +    */
    +  def setBlocks(n: Int): KNN = {
    +    require(n > 1, "Number of blocks must be positive.")
    --- End diff --
    
    Shouldn't it be n > 0 instead of n >1?


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastructure@apache.org or file a JIRA ticket
with INFRA.
---

Mime
View raw message