[ https://issues.apache.org/jira/browse/FLINK-1745?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14614733#comment-14614733 ]
ASF GitHub Bot commented on FLINK-1745:
---------------------------------------
Github user thvasilo commented on a diff in the pull request:
https://github.com/apache/flink/pull/696#discussion_r33916882
--- Diff: flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/KNN.scala ---
@@ -0,0 +1,204 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.ml.classification
+
+import org.apache.flink.api.common.operators.Order
+import org.apache.flink.api.common.typeinfo.TypeInformation
+import org.apache.flink.api.scala.DataSetUtils._
+import org.apache.flink.api.scala._
+import org.apache.flink.ml.common._
+import org.apache.flink.ml.math.Vector
+import org.apache.flink.ml.metrics.distances.{DistanceMetric, EuclideanDistanceMetric}
+import org.apache.flink.ml.pipeline.{FitOperation, PredictDataSetOperation, Predictor}
+import org.apache.flink.util.Collector
+
+import scala.collection.mutable.ArrayBuffer
+import scala.reflect.ClassTag
+
+/** Implements a k-nearest neighbor join.
+ *
+ * This algorithm calculates `k` nearest neighbor points in training set for each points of
+ * testing set.
+ *
+ * @example
+ * {{{
+ * val trainingDS: DataSet[Vector] = ...
+ * val testingDS: DataSet[Vector] = ...
+ *
+ * val knn = KNN()
+ * .setK(10)
+ * .setBlocks(5)
+ * .setDistanceMetric(EuclideanDistanceMetric())
+ *
+ * knn.fit(trainingDS)
+ *
+ * val predictionDS: DataSet[(Vector, Array[Vector])] = knn.predict(testingDS)
+ * }}}
+ *
+ * =Parameters=
+ *
+ * - [[org.apache.flink.ml.classification.KNN.K]]
+ * Sets the K which is the number of selected points as neighbors. (Default value: '''None''')
+ *
+ * - [[org.apache.flink.ml.classification.KNN.Blocks]]
+ * Sets the number of blocks into which the input data will be split. This number should be set
+ * at least to the degree of parallelism. If no value is specified, then the parallelism of the
+ * input [[DataSet]] is used as the number of blocks. (Default value: '''None''')
+ *
+ * - [[org.apache.flink.ml.classification.KNN.DistanceMetric]]
+ * Sets the distance metric to calculate distance between two points. If no metric is specified,
+ * then [[org.apache.flink.ml.metrics.distances.EuclideanDistanceMetric]] is used. (Default value:
+ * '''EuclideanDistanceMetric()''')
+ *
+ */
+class KNN extends Predictor[KNN] {
+
+ import KNN._
+
+ var trainingSet: Option[DataSet[Block[Vector]]] = None
+
+ /** Sets K
+ * @param k the number of selected points as neighbors
+ */
+ def setK(k: Int): KNN = {
+ require(k > 1, "K must be positive.")
+ parameters.add(K, k)
+ this
+ }
+
+ /** Sets the distance metric
+ * @param metric the distance metric to calculate distance between two points
+ */
+ def setDistanceMetric(metric: DistanceMetric): KNN = {
+ parameters.add(DistanceMetric, metric)
+ this
+ }
+
+ /** Sets the number of data blocks/partitions
+ * @param n the number of data blocks
+ */
+ def setBlocks(n: Int): KNN = {
+ require(n > 1, "Number of blocks must be positive.")
--- End diff --
Shouldn't it be n > 0 instead of n >1?
> Add exact k-nearest-neighbours algorithm to machine learning library
> --------------------------------------------------------------------
>
> Key: FLINK-1745
> URL: https://issues.apache.org/jira/browse/FLINK-1745
> Project: Flink
> Issue Type: New Feature
> Components: Machine Learning Library
> Reporter: Till Rohrmann
> Assignee: Till Rohrmann
> Labels: ML, Starter
>
> Even though the k-nearest-neighbours (kNN) [1,2] algorithm is quite trivial it is still used as a mean to classify data and to do regression. This issue focuses on the implementation of an exact kNN (H-BNLJ, H-BRJ) algorithm as proposed in [2].
> Could be a starter task.
> Resources:
> [1] [http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm]
> [2] [https://www.cs.utah.edu/~lifeifei/papers/mrknnj.pdf]
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)