flink-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "ASF GitHub Bot (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (FLINK-2131) Add Initialization schemes for K-means clustering
Date Thu, 12 Nov 2015 16:00:13 GMT

    [ https://issues.apache.org/jira/browse/FLINK-2131?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15002297#comment-15002297
] 

ASF GitHub Bot commented on FLINK-2131:
---------------------------------------

Github user sachingoel0101 commented on the pull request:

    https://github.com/apache/flink/pull/757#issuecomment-156148237
  
    Ping.


> Add Initialization schemes for K-means clustering
> -------------------------------------------------
>
>                 Key: FLINK-2131
>                 URL: https://issues.apache.org/jira/browse/FLINK-2131
>             Project: Flink
>          Issue Type: Task
>          Components: Machine Learning Library
>            Reporter: Sachin Goel
>            Assignee: Sachin Goel
>
> The Lloyd's [KMeans] algorithm takes initial centroids as its input. However, in case
the user doesn't provide the initial centers, they may ask for a particular initialization
scheme to be followed. The most commonly used are these:
> 1. Random initialization: Self-explanatory
> 2. kmeans++ initialization: http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
> 3. kmeans|| : http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf
> For very large data sets, or for large values of k, the kmeans|| method is preferred
as it provides the same approximation guarantees as kmeans++ and requires lesser number of
passes over the input data.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Mime
View raw message