flink-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "ASF GitHub Bot (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (FLINK-6442) Extend TableAPI Support Sink Table Registration and ‘insert into’ Clause in SQL
Date Mon, 18 Sep 2017 20:53:10 GMT

    [ https://issues.apache.org/jira/browse/FLINK-6442?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16170678#comment-16170678
] 

ASF GitHub Bot commented on FLINK-6442:
---------------------------------------

Github user fhueske commented on a diff in the pull request:

    https://github.com/apache/flink/pull/3829#discussion_r139470942
  
    --- Diff: docs/dev/table/sql.md ---
    @@ -49,15 +49,29 @@ DataStream<Tuple3<Long, String, Integer>> ds = env.addSource(...);
     
     // SQL query with an inlined (unregistered) table
     Table table = tableEnv.toTable(ds, "user, product, amount");
    -Table result = tableEnv.sql(
    +Table result = tableEnv.sqlQuery(
       "SELECT SUM(amount) FROM " + table + " WHERE product LIKE '%Rubber%'");
     
     // SQL query with a registered table
     // register the DataStream as table "Orders"
     tableEnv.registerDataStream("Orders", ds, "user, product, amount");
     // run a SQL query on the Table and retrieve the result as a new Table
    -Table result2 = tableEnv.sql(
    +Table result2 = tableEnv.sqlQuery(
       "SELECT product, amount FROM Orders WHERE product LIKE '%Rubber%'");
    +
    +// SQL update with a registered table
    +// register the DataStream as table "Orders"
    +tableEnv.registerDataStream("Orders", ds, "user, product, amount");
    --- End diff --
    
    I think we can reuse the previously registered Orders table.


> Extend TableAPI Support Sink Table Registration and ‘insert into’ Clause in SQL
> -------------------------------------------------------------------------------
>
>                 Key: FLINK-6442
>                 URL: https://issues.apache.org/jira/browse/FLINK-6442
>             Project: Flink
>          Issue Type: New Feature
>          Components: Table API & SQL
>            Reporter: lincoln.lee
>            Assignee: lincoln.lee
>            Priority: Minor
>
> Currently in TableAPI  there’s only registration method for source table,  when we
use SQL writing a streaming job, we should add additional part for the sink, like TableAPI
does:
> {code}
> val sqlQuery = "SELECT * FROM MyTable WHERE _1 = 3"
> val t = StreamTestData.getSmall3TupleDataStream(env)
> tEnv.registerDataStream("MyTable", t)
> // one way: invoke tableAPI’s writeToSink method directly
> val result = tEnv.sql(sqlQuery)
> result.writeToSink(new YourStreamSink)
> // another way: convert to datastream first and then invoke addSink 
> val result = tEnv.sql(sqlQuery).toDataStream[Row]
> result.addSink(new StreamITCase.StringSink)
> {code}
> From the api we can see the sink table always be a derived table because its 'schema'
is inferred from the result type of upstream query.
> Compare to traditional RDBMS which support DML syntax, a query with a target output could
be written like this:
> {code}
> insert into table target_table_name
> [(column_name [ ,...n ])]
> query
> {code}
> The equivalent form of the example above is as follows:
> {code}
>     tEnv.registerTableSink("targetTable", new YourSink)
>     val sql = "INSERT INTO targetTable SELECT a, b, c FROM sourceTable"
>     val result = tEnv.sql(sql)
> {code}
> It is supported by Calcite’s grammar: 
> {code}
>  insert:( INSERT | UPSERT ) INTO tablePrimary
>  [ '(' column [, column ]* ')' ]
>  query
> {code}
> I'd like to extend Flink TableAPI to support such feature.  see design doc: https://goo.gl/n3phK5



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Mime
View raw message