hive-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Maciek Kocon (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (HIVE-12337) Sorted Partitions
Date Wed, 04 Nov 2015 15:46:27 GMT

     [ https://issues.apache.org/jira/browse/HIVE-12337?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Maciek Kocon updated HIVE-12337:
--------------------------------
    Description: To apply [HIVE-12336|https://issues.apache.org/jira/browse/HIVE-12336]) it
is a prerequisite to support for creating partitioned tables where partitions would store
their data sorted by specified columns.  (was: Logically and functionally bucketing and partitioning
are quite similar - both provide mechanism to segregate and separate the table's data based
on its content. Thanks to that significant further optimisations like [partition] PRUNING
or [bucket] MAP JOIN are possible.
The difference seems to be imposed by design where the PARTITIONing is open/explicit while
BUCKETing is discrete/implicit.
Partitioning seems to be very common if not a standard feature in all current RDBMS while
BUCKETING seems to be HIVE specific only.
In a way BUCKETING could be also called by "hashing" or simply "IMPLICIT PARTITIONING".

Regardless of the fact that these two are recognised as two separate features available in
Hive there should be nothing to prevent leveraging same existing query/join optimisations
across the two.


①[Sort Merge] PARTITION Map join (no progress yet)
Enable Bucket Map Join or better, the Sort Merge Bucket Map Join equivalent optimisations
when PARTITIONING is used exclusively or in combination with BUCKETING.

For JOIN conditions where partitioning criteria are used respectively:
            ⋮ 
FROM TabA JOIN TabB
   ON TabA.partCol1 = TabB.partCol2
   AND TabA.partCol2 = TabB.partCol2

the optimizer could/should choose to treat it the same way as with bucketed tables: ⋮ 
FROM TabC
  JOIN TabD
     ON TabC.clusteredByCol1 = TabD.clusteredByCol2
   AND TabC.clusteredByCol2 = TabD.clusteredByCol2

and use either Bucket Map Join or better, the Sort Merge Bucket Map Join. The latter would
require capability to create sorted partitions first.

This is based on fact that same way as buckets translate to separate files, the partitions
essentially provide the same mapping.
When data locality is known the optimizer could focus only on joining corresponding partitions
rather than whole data sets.

②BUCKET pruning (taken care by [HIVE-11525|https://issues.apache.org/jira/browse/HIVE-11525])
Enable partition PRUNING equivalent optimisation for queries on BUCKETED tables

Simplest example is for queries like:
"SELECT … FROM x WHERE colA=123123"
to read only the relevant bucket file rather than all file-buckets that belong to a table.)

> Sorted Partitions
> -----------------
>
>                 Key: HIVE-12337
>                 URL: https://issues.apache.org/jira/browse/HIVE-12337
>             Project: Hive
>          Issue Type: Improvement
>          Components: Logical Optimizer, Physical Optimizer, SQL
>    Affects Versions: 0.13.0, 0.14.0, 0.13.1, 1.0.0, 1.1.0
>            Reporter: Maciek Kocon
>              Labels: gsoc2015
>
> To apply [HIVE-12336|https://issues.apache.org/jira/browse/HIVE-12336]) it is a prerequisite
to support for creating partitioned tables where partitions would store their data sorted
by specified columns.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Mime
View raw message