lucene-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Alessandro Benedetti (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (SOLR-8542) Integrate Learning to Rank into Solr
Date Wed, 09 Mar 2016 14:33:41 GMT

    [ https://issues.apache.org/jira/browse/SOLR-8542?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15187160#comment-15187160
] 

Alessandro Benedetti commented on SOLR-8542:
--------------------------------------------

Just started playing with training a lambdaMart model with RankLib.
Which tool did you use to parse the RankLib model to the Json format compatible with LTR Plugin
( by default RankLib returns an XML describing the trained model) ?
Any suggestion would be useful!

> Integrate Learning to Rank into Solr
> ------------------------------------
>
>                 Key: SOLR-8542
>                 URL: https://issues.apache.org/jira/browse/SOLR-8542
>             Project: Solr
>          Issue Type: New Feature
>            Reporter: Joshua Pantony
>            Assignee: Christine Poerschke
>            Priority: Minor
>         Attachments: README.md, README.md, SOLR-8542-branch_5x.patch, SOLR-8542-trunk.patch
>
>
> This is a ticket to integrate learning to rank machine learning models into Solr. Solr
Learning to Rank (LTR) provides a way for you to extract features directly inside Solr for
use in training a machine learned model. You can then deploy that model to Solr and use it
to rerank your top X search results. This concept was previously presented by the authors
at Lucene/Solr Revolution 2015 ( http://www.slideshare.net/lucidworks/learning-to-rank-in-solr-presented-by-michael-nilsson-diego-ceccarelli-bloomberg-lp
).
> The attached code was jointly worked on by Joshua Pantony, Michael Nilsson, David Grohmann
and Diego Ceccarelli.
> Any chance this could make it into a 5x release? We've also attached documentation as
a github MD file, but are happy to convert to a desired format.
> h3. Test the plugin with solr/example/techproducts in 6 steps
> Solr provides some simple example of indices. In order to test the plugin with 
> the techproducts example please follow these steps
> h4. 1. compile solr and the examples 
> cd solr
> ant dist
> ant example
> h4. 2. run the example
> ./bin/solr -e techproducts 
> h4. 3. stop it and install the plugin:
>    
> ./bin/solr stop
> mkdir example/techproducts/solr/techproducts/lib
> cp build/contrib/ltr/lucene-ltr-6.0.0-SNAPSHOT.jar example/techproducts/solr/techproducts/lib/
> cp contrib/ltr/example/solrconfig.xml example/techproducts/solr/techproducts/conf/
> h4. 4. run the example again
>     
> ./bin/solr -e techproducts
> h4. 5. index some features and a model
> curl -XPUT 'http://localhost:8983/solr/techproducts/schema/fstore'  --data-binary "@./contrib/ltr/example/techproducts-features.json"
 -H 'Content-type:application/json'
> curl -XPUT 'http://localhost:8983/solr/techproducts/schema/mstore'  --data-binary "@./contrib/ltr/example/techproducts-model.json"
 -H 'Content-type:application/json'
> h4. 6. have fun !
> *access to the default feature store*
> http://localhost:8983/solr/techproducts/schema/fstore/_DEFAULT_ 
> *access to the model store*
> http://localhost:8983/solr/techproducts/schema/mstore
> *perform a query using the model, and retrieve the features*
> http://localhost:8983/solr/techproducts/query?indent=on&q=test&wt=json&rq={!ltr%20model=svm%20reRankDocs=25%20efi.query=%27test%27}&fl=*,[features],price,score,name&fv=true



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: dev-unsubscribe@lucene.apache.org
For additional commands, e-mail: dev-help@lucene.apache.org


Mime
View raw message