lucene-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Christine Poerschke (JIRA)" <j...@apache.org>
Subject [jira] [Assigned] (SOLR-9929) Documentation and sample code about how to train the model using user clicks when use ltr module
Date Thu, 05 Jan 2017 09:45:58 GMT

     [ https://issues.apache.org/jira/browse/SOLR-9929?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Christine Poerschke reassigned SOLR-9929:
-----------------------------------------

    Assignee: Christine Poerschke

> Documentation and sample code about how to train the model using user clicks when use
ltr module
> ------------------------------------------------------------------------------------------------
>
>                 Key: SOLR-9929
>                 URL: https://issues.apache.org/jira/browse/SOLR-9929
>             Project: Solr
>          Issue Type: Improvement
>      Security Level: Public(Default Security Level. Issues are Public) 
>            Reporter: jefferyyuan
>            Assignee: Christine Poerschke
>              Labels: learning-to-rank, machine_learning, solr
>
> Thanks very much for integrating machine learning to Solr.
> https://issues.apache.org/jira/browse/SOLR-8542
> I tried to integrate it. But have difficult figuring out how to translate the partial
pairwise feedback to the importance or relevance of that doc.
> https://github.com/apache/lucene-solr/blob/f62874e47a0c790b9e396f58ef6f14ea04e2280b/solr/contrib/ltr/README.md
> In the Assemble training data part: the third column indicates the relative importance
or relevance of that doc
> Could you please give more info about how to give a score based on what user clicks?
> I have read https://static.aminer.org/pdf/PDF/000/472/865/optimizing_search_engines_using_clickthrough_data.pdf
> http://www.cs.cornell.edu/people/tj/publications/joachims_etal_05a.pdf
> http://alexbenedetti.blogspot.com/2016/07/solr-is-learning-to-rank-better-part-1.html
> But still have no clue yet.
> From a user's perspective, the steps such as setup the feature and model in Solr is simple,
but collecting the feedback data and train/update the model is much more complex. Without
it, we can't really use the learning-to-rank function in Solr.
> It would be great if Solr can provide some detailed instruction and sample code about
how to translate the partial pairwise feedback and use it to train and update model.
> Thanks



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: dev-unsubscribe@lucene.apache.org
For additional commands, e-mail: dev-help@lucene.apache.org


Mime
View raw message