mahout-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Dominik Hübner <cont...@dhuebner.com>
Subject Re: Setting up a recommender
Date Fri, 19 Jul 2013 20:06:44 GMT
+1 for getting something like that in a future release of Mahout

On Jul 19, 2013, at 10:02 PM, Sebastian Schelter <ssc@apache.org> wrote:

> It would be awesome if we could get a nice, easily deployable
> implementation of that approach into Mahout before 1.0
> 
> 
> 2013/7/19 Ted Dunning <ted.dunning@gmail.com>
> 
>> My current advice is to use Hadoop (if necessary) to build a sparse
>> item-item matrix based on each kind of behavior you have and then drop
>> those similarities into a search engine to deliver the actual
>> recommendations.  This allows lots of flexibility in terms of which kinds
>> of inputs you use for the recommendation and lets you blend recommendations
>> with search and geo-location.
>> 
>> 
>> On Fri, Jul 19, 2013 at 12:33 PM, Helder Martins <
>> helder.garay@corp.terra.com.br> wrote:
>> 
>>> Hi,
>>> I'm a dev working for a web portal in Brazil and I'm particularly
>>> interested in building a item-based collaborative filtering recommender
>>> for our database of news articles.
>>> After some coding, I was able to get some recommendations using a
>>> GenericItemBasedRecommender, a CassandraDataModel and some custom
>>> classes that store item similarities and migrated item IDs into
>>> Cassandra. But know I'm in doubt of what is normally done with this
>>> recommender: Should I run this as a daemon, cache the recommendations
>>> into memory and set up a web service to consult it online? Should I pre
>>> process these recommendations for each recent user and store it
>>> somewhere? My first idea was storing all these recs back into Cassandra,
>>> but looking into some classes it seems to me that the norm is to read
>>> the input data and store the output always using files. Is this a common
>>> practice that benefits from HDFS?
>>> My use case here is something around 70k recommendations requests per
>>> second.
>>> 
>>> Thanks in advance,
>>> 
>>> --
>>> 
>>> Atenciosamente
>>> Helder Martins
>>> Arquitetura do Portal e Sistemas de Backend
>>> +55 (51) 3284-4475
>>> Terra
>>> 
>>> 
>>> Esta mensagem e seus anexos se dirigem exclusivamente ao seu
>> destinatário,
>>> podem conter informação privilegiada ou confidencial e são de uso
>> exclusivo
>>> da pessoa ou entidade de destino. Se não for destinatário desta mensagem,
>>> fica notificado de que a leitura, utilização, divulgação e/ou cópia sem
>>> autorização pode estar proibida em virtude da legislação vigente. Se
>>> recebeu esta mensagem por engano, pedimos que nos o comunique
>> imediatamente
>>> por esta mesma via e, em seguida, apague-a.
>>> 
>>> Este mensaje y sus adjuntos se dirigen exclusivamente a su destinatario,
>>> puede contener información privilegiada o confidencial y es para uso
>>> exclusivo de la persona o entidad de destino. Si no es usted él
>>> destinatario indicado, queda notificado de que la lectura, utilización,
>>> divulgación y/o copia sin autorización puede estar prohibida en virtud de
>>> la legislación vigente. Si ha recibido este mensaje por error, le pedimos
>>> que nos lo comunique inmediatamente por esta misma vía y proceda a su
>>> exclusión.
>>> 
>>> The information contained in this transmissión is privileged and
>>> confidential information intended only for the use of the individual or
>>> entity named above. If the reader of this message is not the intended
>>> recipient, you are hereby notified that any dissemination, distribution
>> or
>>> copying of this communication is strictly prohibited. If you have
>> received
>>> this transmission in error, do not read it. Please immediately reply to
>> the
>>> sender that you have received this communication in error and then delete
>>> it.
>>> 
>> 


Mime
View raw message