nifi-users mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Kuhfahl, Bob" <rkuhf...@mitre.org>
Subject Re: Need a sample JSON input file for InferAvroSchema -> PutDatabaseRecord
Date Tue, 14 Aug 2018 16:20:58 GMT
Sorry for the newbie problems.
For me, I have to format my input file to be more like:

{"producer": [{
    "fpa": "MATP",
    "owner_producer": "US",
    "prod_lvl_cap": "M",
    "producer_datetime_last_chg": "20190101",
    "producer_userid": "mytest",
    "res_prod": "DJ",
    "review_date": "20071015"
},
{
    "fpa": "ELEC",
    "owner_producer": "US",
    "prod_lvl_cap": "M",
    "producer_datetime_last_chg": "20190101",
    "producer_userid": "fdolomite",
    "res_prod": "DJ",
    "review_date": "20111118"
},
{
    "fpa": "AFLD",
    "owner_producer": "US",
    "prod_lvl_cap": "M",
    "producer_datetime_last_chg": "20190101",
    "producer_userid": "brenda",
    "res_prod": "YF",
    "review_date": "20140918"
}]}

Such that it will parse.  Anything shaped like what was in previous email will not make it
past InferAvroSchema.
Once I do this, I can define the JsonPathReader in PutDatabaseRecord to pick up this schema
from ${inferred.avro.schema}
All this works, and I’m confident PutDatabaseRecord is talking to the database as I am getting
the error:

Record does not have a value for the Required column 'owner_producer'

The database is the only one that knows that’s a required field.
The data is in the flow, but…. Not being found.
Something is not lined up right…

The schema coming out of InferAvroSchema is:

{
   "type": "record",
   "name": "anything",
   "fields": [{
      "name": "producer",
      "type": {
         "type": "array",
         "items": {
            "type": "record",
            "name": "producer",
            "fields": [{
               "name": "fpa",
               "type": "string",
               "doc": "Type inferred from '\"MATP\"'"
            }, {
               "name": "owner_producer",
               "type": "string",
               "doc": "Type inferred from '\"US\"'"
            }, {
               "name": "prod_lvl_cap",
               "type": "string",
               "doc": "Type inferred from '\"M\"'"
            }, {
               "name": "producer_datetime_last_chg",
               "type": "string",
               "doc": "Type inferred from '\"20190101\"'"
            }, {
               "name": "producer_userid",
               "type": "string",
               "doc": "Type inferred from '\"mytest\"'"
            }, {
               "name": "res_prod",
               "type": "string",
               "doc": "Type inferred from '\"DJ\"'"
            }, {
               "name": "review_date",
               "type": "string",
               "doc": "Type inferred from '\"20071015\"'"
            }]
         }
      },
      "doc": "Type inferred from '[{\"fpa\":\"MATP\",\"owner_producer\":\"US\",\"prod_lvl_cap\":\"M\",\"producer_datetime_last_chg\":\"20190101\",\"producer_userid\":\"mytest\",\"res_prod\":\"DJ\",\"review_date\":\"20071015\"},{\"midb_sk\":\"10035001359911\",\"midb_source_entity\":\"FacAka\",\"fpa\":\"ELEC\",\"owner_producer\":\"US\",\"prod_lvl_cap\":\"M\",\"producer_datetime_last_chg\":\"20190101\",\"producer_userid\":\"fdolomite\",\"res_prod\":\"DJ\",\"review_date\":\"20111118\"},{\"fpa\":\"AFLD\",\"owner_producer\":\"US\",\"prod_lvl_cap\":\"M\",\"producer_datetime_last_chg\":\"20190101\",\"producer_userid\":\"brenda\",\"res_prod\":\"YF\",\"review_date\":\"20140918\"}]'"
   }]
}


From: Matt Burgess <mattyb149@apache.org>
Reply-To: "users@nifi.apache.org" <users@nifi.apache.org>
Date: Monday, August 13, 2018 at 11:19 AM
To: "users@nifi.apache.org" <users@nifi.apache.org>
Subject: Re: Need a sample JSON input file for InferAvroSchema

Bob,

InferAvroSchema can infer types like boolean, integer, long, float, double, and I believe
for JSON can correctly descend into arrays and nested maps/structs/objects. Here is an example
record from NiFi provenance data that has most of those covered (except bool and float/double,
but you can add those):

{
  "eventId" : "7422645d-056e-423b-b280-6305f9daccaa",
  "eventOrdinal" : 0,
  "eventType" : "CREATE",
  "timestampMillis" : 1496934288944,
  "timestamp" : "2017-06-08T15:04:48.944Z",
  "durationMillis" : -1,
  "lineageStart" : 1496934288930,
  "componentId" : "8821e5d8-015c-1000-30b0-f7211bbf43e5",
  "componentType" : "GenerateFlowFile",
  "componentName" : "_GenerateFlowFile",
  "entityId" : "b99a56c6-e032-4396-915e-24186974b84a",
  "entityType" : "org.apache.nifi.flowfile.FlowFile",
  "entitySize" : 52,
  "updatedAttributes" : {
    "path" : "./",
    "uuid" : "b99a56c6-e032-4396-915e-24186974b84a",
    "filename" : "924304881186293"
  },
  "previousAttributes" : { },
  "actorHostname" : "localhost",
  "contentURI" : "http://localhost:8989/nifi-api/provenance-events/0/content/output",
  "previousContentURI" : "http://localhost:8989/nifi-api/provenance-events/0/content/input",
  "parentIds" : [ ],
  "childIds" : [ ],
  "platform" : "nifi",
  "application" : "NiFi Flow"
}

 Note that the timestamps are longs as InferAvroSchema does not support Avro logical types
(such as timestamp, date, decimal). I'd like to see an InferRecordSchema that is record-aware,
supports time/date types, etc. I wrote up a Jira a while back to cover it [1] but haven't
gotten around to implementing it yet.

Regards,
Matt

[1] https://issues.apache.org/jira/browse/NIFI-4109


On Mon, Aug 13, 2018 at 11:02 AM Kuhfahl, Bob <rkuhfahl@mitre.org<mailto:rkuhfahl@mitre.org>>
wrote:
Trying to develop a sample input file of json data to feed into InferAvroSchema so I can feed
that into PutDatabaseRecord.
Need a hello world example ☺

But, to get started, I’d be happy to get InferAvroSchema working.  I’m “trial and error”-ing
the input file hoping to get lucky, but..

No log messages, flow of json data is going to failure,  I’m reading the code for InferAvroSchema()
But it just calls  JsonUtil.inferSchema(), so I’ll keep digging down the path but… if
someone has a sample input that demonstrates how it’s supposed to work, I’d be grateful!





Mime
View raw message