nutch-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From chrismattmann <...@git.apache.org>
Subject [GitHub] nutch pull request: NUTCH-2038
Date Fri, 19 Jun 2015 03:18:31 GMT
Github user chrismattmann commented on a diff in the pull request:

    https://github.com/apache/nutch/pull/32#discussion_r32798921
  
    --- Diff: src/plugin/urlfilter-model/src/java/org/apache/nutch/urlfilter/model/NBClassifier.java
---
    @@ -0,0 +1,234 @@
    +/**
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.nutch.urlfilter.model;
    +
    +import java.io.BufferedReader;
    +import java.io.FileReader;
    +import java.io.IOException;
    +import java.io.StringReader;
    +import java.util.HashMap;
    +import java.util.Map;
    +
    +import org.apache.hadoop.conf.Configuration;
    +import org.apache.hadoop.fs.FileSystem;
    +import org.apache.hadoop.fs.Path;
    +import org.apache.hadoop.io.IntWritable;
    +import org.apache.hadoop.io.LongWritable;
    +import org.apache.hadoop.io.SequenceFile;
    +import org.apache.hadoop.io.SequenceFile.Writer;
    +import org.apache.hadoop.io.Text;
    +import org.apache.lucene.analysis.Analyzer;
    +import org.apache.lucene.analysis.TokenStream;
    +import org.apache.lucene.analysis.standard.StandardAnalyzer;
    +import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
    +import org.apache.lucene.util.Version;
    +import org.apache.mahout.classifier.naivebayes.BayesUtils;
    +import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
    +import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
    +import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
    +import org.apache.mahout.common.Pair;
    +import org.apache.mahout.common.iterator.sequencefile.SequenceFileIterable;
    +import org.apache.mahout.math.RandomAccessSparseVector;
    +import org.apache.mahout.math.Vector;
    +import org.apache.mahout.math.Vector.Element;
    +import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
    +import org.apache.mahout.vectorizer.TFIDF;
    +
    +import com.google.common.collect.ConcurrentHashMultiset;
    +import com.google.common.collect.Multiset;
    +
    +public class NBClassifier {
    +
    +	public static Map<String, Integer> readDictionnary(Configuration conf,
    +			Path dictionnaryPath) {
    +		Map<String, Integer> dictionnary = new HashMap<String, Integer>();
    +		for (Pair<Text, IntWritable> pair : new SequenceFileIterable<Text, IntWritable>(
    +				dictionnaryPath, true, conf)) {
    +			dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
    +		}
    +		return dictionnary;
    +	}
    +
    +	public static Map<Integer, Long> readDocumentFrequency(Configuration conf,
    +			Path documentFrequencyPath) {
    +		Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
    +		for (Pair<IntWritable, LongWritable> pair : new SequenceFileIterable<IntWritable,
LongWritable>(
    +				documentFrequencyPath, true, conf)) {
    +			documentFrequency
    +					.put(pair.getFirst().get(), pair.getSecond().get());
    +		}
    +		return documentFrequency;
    +	}
    +
    +	public static void createModel(String inputTrainFilePath) throws Exception {
    +
    +		String[] args1 = new String[4];
    +
    +		args1[0] = "-i";
    +		args1[1] = "outseq";
    +		args1[2] = "-o";
    +		args1[3] = "vectors";
    +
    +		String[] args2 = new String[9];
    +
    +		args2[0] = "-i";
    +		args2[1] = "vectors/tfidf-vectors";
    +		args2[2] = "-el";
    +		args2[3] = "-li";
    +		args2[4] = "labelindex";
    +		args2[5] = "-o";
    +		args2[6] = "model";
    +		args2[7] = "-ow";
    +		args2[8] = "-c";
    +
    +		convertToSeq(inputTrainFilePath, "outseq");
    +
    +		SparseVectorsFromSequenceFiles.main(args1);
    +
    +		TrainNaiveBayesJob.main(args2);
    +	}
    +
    +	public static String classify(String text) throws IOException {
    +		return classify(text, "model", "labelindex",
    +				"vectors/dictionary.file-0", "vectors/df-count/part-r-00000");
    +	}
    +
    +	public static String classify(String text, String modelPath,
    +			String labelIndexPath, String dictionaryPath,
    +			String documentFrequencyPath) throws IOException {
    +
    +		Configuration configuration = new Configuration();
    +
    +		// model is a matrix (wordId, labelId) => probability score
    +		NaiveBayesModel model = NaiveBayesModel.materialize(
    +				new Path(modelPath), configuration);
    +
    +		StandardNaiveBayesClassifier classifier = new StandardNaiveBayesClassifier(
    +				model);
    +
    +		// labels is a map label => classId
    +		Map<Integer, String> labels = BayesUtils.readLabelIndex(configuration,
    +				new Path(labelIndexPath));
    +		Map<String, Integer> dictionary = readDictionnary(configuration,
    +				new Path(dictionaryPath));
    +		Map<Integer, Long> documentFrequency = readDocumentFrequency(
    +				configuration, new Path(documentFrequencyPath));
    +
    +		// analyzer used to extract word from text
    +		Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_43);
    +		// int labelCount = labels.size();
    +		int documentCount = documentFrequency.get(-1).intValue();
    +
    +		Multiset<String> words = ConcurrentHashMultiset.create();
    +
    +		// extract words from text
    +		TokenStream ts = analyzer.tokenStream("text", new StringReader(text));
    +		CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class);
    +		ts.reset();
    +		int wordCount = 0;
    +		while (ts.incrementToken()) {
    +			if (termAtt.length() > 0) {
    +				String word = ts.getAttribute(CharTermAttribute.class)
    +						.toString();
    +				Integer wordId = dictionary.get(word);
    +				// if the word is not in the dictionary, skip it
    +				if (wordId != null) {
    +					words.add(word);
    +					wordCount++;
    +				}
    +			}
    +		}
    +
    +		ts.end();
    +		ts.close();
    +		// create vector wordId => weight using tfidf
    +		Vector vector = new RandomAccessSparseVector(10000);
    +		TFIDF tfidf = new TFIDF();
    +		for (Multiset.Entry<String> entry : words.entrySet()) {
    +			String word = entry.getElement();
    +			int count = entry.getCount();
    +			Integer wordId = dictionary.get(word);
    +			Long freq = documentFrequency.get(wordId);
    +			double tfIdfValue = tfidf.calculate(count, freq.intValue(),
    +					wordCount, documentCount);
    +			vector.setQuick(wordId, tfIdfValue);
    +		}
    +		// one score for each label
    +
    +		Vector resultVector = classifier.classifyFull(vector);
    +		double bestScore = -Double.MAX_VALUE;
    +		int bestCategoryId = -1;
    +		for (Element element : resultVector.all()) {
    +			int categoryId = element.index();
    +			double score = element.get();
    +			if (score > bestScore) {
    +				bestScore = score;
    +				bestCategoryId = categoryId;
    +			}
    +
    +		}
    +
    +		analyzer.close();
    +		return labels.get(bestCategoryId);
    +
    +	}
    +
    +	static void convertToSeq(String inputFileName, String outputDirName)
    +			throws IOException {
    +		Configuration configuration = new Configuration();
    +		FileSystem fs = FileSystem.get(configuration);
    +		Writer writer = new SequenceFile.Writer(fs, configuration, new Path(
    +				outputDirName + "/chunk-0"), Text.class, Text.class);
    +
    +		BufferedReader reader = new BufferedReader(
    +				new FileReader(inputFileName));
    +		Text key = new Text();
    +		Text value = new Text();
    +		while (true) {
    +			String line = reader.readLine();
    +			if (line == null) {
    +				break;
    +			}
    +			String[] tokens = line.split("\t", 3);
    +			if (tokens.length != 3) {
    +				// System.out.println("Skip line: " + line);
    +				continue;
    +			}
    +			String category = tokens[0];
    +			String id = tokens[1];
    +			String message = tokens[2];
    +			key.set("/" + category + "/" + id);
    +			value.set(message);
    +			writer.append(key, value);
    +
    +		}
    +		reader.close();
    +		writer.close();
    +
    +	}
    +
    +	public static void main(String args[]) throws Exception {
    --- End diff --
    
    +1


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastructure@apache.org or file a JIRA ticket
with INFRA.
---

Mime
View raw message