spark-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Yin Huai <yh...@databricks.com>
Subject Re: org.apache.spark.sql.sources.DDLException: Unsupported dataType: [1.1] failure: ``varchar'' expected but identifier char found in spark-sql
Date Tue, 17 Feb 2015 16:34:21 GMT
Hi Quizhuang,

Right now, char is not supported in DDL. Can you try varchar or string?

Thanks,

Yin

On Mon, Feb 16, 2015 at 10:39 PM, Qiuzhuang Lian <qiuzhuang.lian@gmail.com>
wrote:

> Hi,
>
> I am not sure this has been reported already or not, I run into this error
> under spark-sql shell as build from newest of spark git trunk,
>
> spark-sql> describe qiuzhuang_hcatlog_import;
> 15/02/17 14:38:36 ERROR SparkSQLDriver: Failed in [describe
> qiuzhuang_hcatlog_import]
> org.apache.spark.sql.sources.DDLException: Unsupported dataType: [1.1]
> failure: ``varchar'' expected but identifier char found
>
> char(32)
> ^
> at org.apache.spark.sql.sources.DDLParser.parseType(ddl.scala:52)
> at
>
> org.apache.spark.sql.hive.MetastoreRelation$SchemaAttribute.toAttribute(HiveMetastoreCatalog.scala:664)
> at
>
> org.apache.spark.sql.hive.MetastoreRelation$$anonfun$23.apply(HiveMetastoreCatalog.scala:674)
> at
>
> org.apache.spark.sql.hive.MetastoreRelation$$anonfun$23.apply(HiveMetastoreCatalog.scala:674)
> at
>
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> at
>
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> at scala.collection.Iterator$class.foreach(Iterator.scala:727)
> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
> at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
> at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
> at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
> at scala.collection.AbstractTraversable.map(Traversable.scala:105)
> at
>
> org.apache.spark.sql.hive.MetastoreRelation.<init>(HiveMetastoreCatalog.scala:674)
> at
>
> org.apache.spark.sql.hive.HiveMetastoreCatalog.lookupRelation(HiveMetastoreCatalog.scala:185)
> at org.apache.spark.sql.hive.HiveContext$$anon$2.org
>
> $apache$spark$sql$catalyst$analysis$OverrideCatalog$$super$lookupRelation(HiveContext.scala:234)
>
> As in hive 0.131, console, this commands works,
>
> hive> describe qiuzhuang_hcatlog_import;
> OK
> id                      char(32)
> assistant_no            varchar(20)
> assistant_name          varchar(32)
> assistant_type          int
> grade                   int
> shop_no                 varchar(20)
> shop_name               varchar(64)
> organ_no                varchar(20)
> organ_name              varchar(20)
> entry_date              string
> education               int
> commission              decimal(8,2)
> tel                     varchar(20)
> address                 varchar(100)
> identity_card           varchar(25)
> sex                     int
> birthday                string
> employee_type           int
> status                  int
> remark                  varchar(255)
> create_user_no          varchar(20)
> create_user             varchar(32)
> create_time             string
> update_user_no          varchar(20)
> update_user             varchar(32)
> update_time             string
> Time taken: 0.49 seconds, Fetched: 26 row(s)
> hive>
>
>
> Regards,
> Qiuzhuang
>

Mime
  • Unnamed multipart/alternative (inline, None, 0 bytes)
View raw message