spark-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Evan Chan <velvia.git...@gmail.com>
Subject Re: more uniform exception handling?
Date Mon, 18 Apr 2016 20:18:52 GMT
+1000.

Especially if the UI can help correlate exceptions, and we can reduce
some exceptions.

There are some exceptions which are in practice very common, such as
the nasty ClassNotFoundException, that most folks end up spending tons
of time debugging.


On Mon, Apr 18, 2016 at 12:16 PM, Reynold Xin <rxin@databricks.com> wrote:
> Josh's pull request on rpc exception handling got me to think ...
>
> In my experience, there have been a few things related exceptions that
> created a lot of trouble for us in production debugging:
>
> 1. Some exception is thrown, but is caught by some try/catch that does not
> do any logging nor rethrow.
> 2. Some exception is thrown, but is caught by some try/catch that does not
> do any logging, but do rethrow. But the original exception is now masked.
> 2. Multiple exceptions are logged at different places close to each other,
> but we don't know whether they are caused by the same problem or not.
>
>
> To mitigate some of the above, here's an idea ...
>
> (1) Create a common root class for all the exceptions (e.g. call it
> SparkException) used in Spark. We should make sure every time we catch an
> exception from a 3rd party library, we rethrow them as SparkException (a lot
> of places already do that). In SparkException's constructor, log the
> exception and the stacktrace.
>
> (2) SparkException has a monotonically increasing ID, and this ID appears in
> the exception error message (say at the end).
>
>
> I think (1) will eliminate most of the cases that an exception gets
> swallowed. The main downside I can think of is we might log an exception
> multiple times. However, I'd argue exceptions should be rare, and it is not
> that big of a deal to log them twice or three times. The unique ID (2) can
> help us correlate exceptions if they appear multiple times.
>
> Thoughts?
>
>
>
>
>

---------------------------------------------------------------------
To unsubscribe, e-mail: dev-unsubscribe@spark.apache.org
For additional commands, e-mail: dev-help@spark.apache.org


Mime
View raw message