Alex Baretta created SPARK-5314:
-----------------------------------
Summary: java.lang.OutOfMemoryError in SparkSQL with GROUP BY
Key: SPARK-5314
URL: https://issues.apache.org/jira/browse/SPARK-5314
Project: Spark
Issue Type: Bug
Reporter: Alex Baretta
I am running a SparkSQL GROUP BY query on a largish Parquet table (a few hundred million rows),
weighing it at about 50GB. My cluster has 1.7 TB of RAM, so it should have more than plenty
resources to cope with this query.
WARN TaskSetManager: Lost task 279.0 in stage 22.0 (TID 1229, ds-model-w-21.c.eastern-gravity-771.internal):
java.lang.OutOfMemoryError: GC overhead limit exceeded
at scala.collection.SeqLike$class.distinct(SeqLike.scala:493)
at scala.collection.AbstractSeq.distinct(Seq.scala:40)
at org.apache.spark.sql.catalyst.expressions.Coalesce.resolved$lzycompute(nullFunctions.scala:33)
at org.apache.spark.sql.catalyst.expressions.Coalesce.resolved(nullFunctions.scala:33)
at org.apache.spark.sql.catalyst.expressions.Coalesce.dataType(nullFunctions.scala:37)
at org.apache.spark.sql.catalyst.expressions.Expression.n2(Expression.scala:100)
at org.apache.spark.sql.catalyst.expressions.Add.eval(arithmetic.scala:101)
at org.apache.spark.sql.catalyst.expressions.Coalesce.eval(nullFunctions.scala:50)
at org.apache.spark.sql.catalyst.expressions.MutableLiteral.update(literals.scala:81)
at org.apache.spark.sql.catalyst.expressions.SumFunction.update(aggregates.scala:571)
at org.apache.spark.sql.execution.Aggregate$$anonfun$execute$1$$anonfun$7.apply(Aggregate.scala:167)
at org.apache.spark.sql.execution.Aggregate$$anonfun$execute$1$$anonfun$7.apply(Aggregate.scala:151)
at org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:615)
at org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:615)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:264)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:231)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:264)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:231)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:56)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:183)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org
|