spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Jon Chase (JIRA)" <j...@apache.org>
Subject [jira] [Created] (SPARK-6570) Spark SQL "explode()" fails, assumes underlying SQL array is represented by Scala Seq
Date Fri, 27 Mar 2015 11:34:57 GMT
Jon Chase created SPARK-6570:
--------------------------------

             Summary: Spark SQL "explode()" fails, assumes underlying SQL array is represented
by Scala Seq
                 Key: SPARK-6570
                 URL: https://issues.apache.org/jira/browse/SPARK-6570
             Project: Spark
          Issue Type: Bug
          Components: SQL
    Affects Versions: 1.3.0
            Reporter: Jon Chase


{code}
    @Rule
    public TemporaryFolder tmp = new TemporaryFolder();

    @Test
    public void testPercentileWithExplode() throws Exception {
        StructType schema = DataTypes.createStructType(Lists.newArrayList(
                DataTypes.createStructField("col1", DataTypes.StringType, false),
                DataTypes.createStructField("col2s", DataTypes.createArrayType(DataTypes.IntegerType,
true), true)
        ));

        JavaRDD<Row> rowRDD = sc.parallelize(Lists.newArrayList(
                RowFactory.create("test", new int[]{1, 2, 3})
        ));

        DataFrame df = sql.createDataFrame(rowRDD, schema);
        df.registerTempTable("df");
        df.printSchema();

        List<int[]> ints = sql.sql("select col2s from df").javaRDD()
                              .map(row -> (int[]) row.get(0)).collect();
        assertEquals(1, ints.size());
        assertArrayEquals(new int[]{1, 2, 3}, ints.get(0));


        // fails: lateral view explode does not work: java.lang.ClassCastException: [I cannot
be cast to scala.collection.Seq
        List<Integer> explodedInts = sql.sql("select col2 from df lateral view explode(col2s)
splode as col2").javaRDD()
                                        .map(row -> row.getInt(0)).collect();
        assertEquals(3, explodedInts.size());
        assertEquals(Lists.newArrayList(1, 2, 3), explodedInts);


        // fails: java.lang.ClassCastException: [I cannot be cast to scala.collection.Seq
        df.saveAsParquetFile(tmp.getRoot().getAbsolutePath() + "/parquet");


        DataFrame loadedDf = sql.load(tmp.getRoot().getAbsolutePath() + "/parquet");
        loadedDf.registerTempTable("loadedDf");
        List<int[]> moreInts = sql.sql("select col2s from loadedDf").javaRDD()
                                  .map(row -> (int[]) row.get(0)).collect();
        assertEquals(1, moreInts.size());
        assertArrayEquals(new int[]{1, 2, 3}, moreInts.get(0));
    }
{code}


{code}
root
 |-- col1: string (nullable = false)
 |-- col2s: array (nullable = true)
 |    |-- element: integer (containsNull = true)

ERROR org.apache.spark.executor.Executor Exception in task 7.0 in stage 1.0 (TID 15)
java.lang.ClassCastException: [I cannot be cast to scala.collection.Seq
	at org.apache.spark.sql.catalyst.expressions.Explode.eval(generators.scala:125) ~[spark-catalyst_2.10-1.3.0.jar:1.3.0]
	at org.apache.spark.sql.execution.Generate$$anonfun$2$$anonfun$apply$1.apply(Generate.scala:70)
~[spark-sql_2.10-1.3.0.jar:1.3.0]
	at org.apache.spark.sql.execution.Generate$$anonfun$2$$anonfun$apply$1.apply(Generate.scala:69)
~[spark-sql_2.10-1.3.0.jar:1.3.0]
	at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) ~[scala-library-2.10.4.jar:na]
	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) ~[scala-library-2.10.4.jar:na]
	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) ~[scala-library-2.10.4.jar:na]
	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) ~[scala-library-2.10.4.jar:na]
	at scala.collection.Iterator$class.foreach(Iterator.scala:727) ~[scala-library-2.10.4.jar:na]
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) ~[scala-library-2.10.4.jar:na]
{code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message