spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Michael Armbrust (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (SPARK-12031) Integer overflow when do sampling.
Date Tue, 01 Dec 2015 05:04:11 GMT

     [ https://issues.apache.org/jira/browse/SPARK-12031?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Michael Armbrust updated SPARK-12031:
-------------------------------------
    Description: 
In my case, some partitions contain too much items. When do range partition, exception thrown
as:

{code}
java.lang.IllegalArgumentException: n must be positive
at java.util.Random.nextInt(Random.java:300)
at org.apache.spark.util.random.SamplingUtils$.reservoirSampleAndCount(SamplingUtils.scala:58)
at org.apache.spark.RangePartitioner$$anonfun$8.apply(Partitioner.scala:259)
at org.apache.spark.RangePartitioner$$anonfun$8.apply(Partitioner.scala:257)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$18.apply(RDD.scala:703)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$18.apply(RDD.scala:703)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
{code}

  was:
In my case, some partitions contain too much items. When do range partition, exception thrown
as:


java.lang.IllegalArgumentException: n must be positive
at java.util.Random.nextInt(Random.java:300)
at org.apache.spark.util.random.SamplingUtils$.reservoirSampleAndCount(SamplingUtils.scala:58)
at org.apache.spark.RangePartitioner$$anonfun$8.apply(Partitioner.scala:259)
at org.apache.spark.RangePartitioner$$anonfun$8.apply(Partitioner.scala:257)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$18.apply(RDD.scala:703)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$18.apply(RDD.scala:703)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)


> Integer overflow when do sampling.
> ----------------------------------
>
>                 Key: SPARK-12031
>                 URL: https://issues.apache.org/jira/browse/SPARK-12031
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core
>    Affects Versions: 1.5.1, 1.5.2
>            Reporter: uncleGen
>
> In my case, some partitions contain too much items. When do range partition, exception
thrown as:
> {code}
> java.lang.IllegalArgumentException: n must be positive
> at java.util.Random.nextInt(Random.java:300)
> at org.apache.spark.util.random.SamplingUtils$.reservoirSampleAndCount(SamplingUtils.scala:58)
> at org.apache.spark.RangePartitioner$$anonfun$8.apply(Partitioner.scala:259)
> at org.apache.spark.RangePartitioner$$anonfun$8.apply(Partitioner.scala:257)
> at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$18.apply(RDD.scala:703)
> at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$18.apply(RDD.scala:703)
> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
> at org.apache.spark.scheduler.Task.run(Task.scala:70)
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
> at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
> at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
> at java.lang.Thread.run(Thread.java:745)
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message