spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Yin Huai (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (SPARK-15192) RowEncoder needs to verify nullability in a more explicit way
Date Thu, 19 May 2016 01:09:12 GMT

    [ https://issues.apache.org/jira/browse/SPARK-15192?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15290215#comment-15290215
] 

Yin Huai commented on SPARK-15192:
----------------------------------

This issue has been resolved by https://github.com/apache/spark/pull/13008.

> RowEncoder needs to verify nullability in a more explicit way
> -------------------------------------------------------------
>
>                 Key: SPARK-15192
>                 URL: https://issues.apache.org/jira/browse/SPARK-15192
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>            Reporter: Yin Huai
>             Fix For: 2.0.0
>
>
> When we create a Dataset from an RDD of rows with a specific schema, if the nullability
of a value does not match the nullability defined in the schema, we will throw an exception
that is not easy to understand. 
> It will be good to verify the nullability in a more explicit way.
> {code}
> import org.apache.spark.sql.types._
> import org.apache.spark.sql.Row
> val schema = new StructType().add("a", StringType, false).add("b", StringType, false)
> val rdd = sc.parallelize(Row(null, "123") :: Row("234", null) :: Nil)
> spark.createDataFrame(rdd, schema).show
> {code}
> {noformat}
> java.lang.RuntimeException: Error while decoding: java.lang.NullPointerException
> createexternalrow(if (isnull(input[0, string])) null else input[0, string].toString,
if (isnull(input[1, string])) null else input[1, string].toString, StructField(a,StringType,false),
StructField(b,StringType,false))
> :- if (isnull(input[0, string])) null else input[0, string].toString
> :  :- isnull(input[0, string])
> :  :  +- input[0, string]
> :  :- null
> :  +- input[0, string].toString
> :     +- input[0, string]
> +- if (isnull(input[1, string])) null else input[1, string].toString
>    :- isnull(input[1, string])
>    :  +- input[1, string]
>    :- null
>    +- input[1, string].toString
>       +- input[1, string]
>   at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.fromRow(ExpressionEncoder.scala:244)
>   at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1$$anonfun$apply$13.apply(Dataset.scala:2119)
>   at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1$$anonfun$apply$13.apply(Dataset.scala:2119)
>   at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>   at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>   at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>   at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
>   at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>   at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
>   at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2119)
>   at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
>   at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2407)
>   at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2118)
>   at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2125)
>   at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:1859)
>   at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:1858)
>   at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2437)
>   at org.apache.spark.sql.Dataset.head(Dataset.scala:1858)
>   at org.apache.spark.sql.Dataset.take(Dataset.scala:2075)
>   at org.apache.spark.sql.Dataset.showString(Dataset.scala:239)
>   at org.apache.spark.sql.Dataset.show(Dataset.scala:530)
>   at org.apache.spark.sql.Dataset.show(Dataset.scala:490)
>   at org.apache.spark.sql.Dataset.show(Dataset.scala:499)
>   ... 50 elided
> Caused by: java.lang.NullPointerException
>   at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificSafeProjection.apply(Unknown
Source)
>   at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.fromRow(ExpressionEncoder.scala:241)
>   ... 72 more
> {noformat}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message