[ https://issues.apache.org/jira/browse/SPARK-17195?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15453801#comment-15453801
]
Jason Moore commented on SPARK-17195:
-------------------------------------
That's right, and I totally agree that's where the fix needs to be. And I'm pressing them
to make this fix. I guess that means that this ticket can be closed, as it seems a reasonable
workaround within Spark itself isn't possible. Once the TD driver has been fixed I'll return
here to mention the version it is fixed in.
> Dealing with JDBC column nullability when it is not reliable
> ------------------------------------------------------------
>
> Key: SPARK-17195
> URL: https://issues.apache.org/jira/browse/SPARK-17195
> Project: Spark
> Issue Type: Bug
> Components: SQL
> Affects Versions: 2.0.0
> Reporter: Jason Moore
>
> Starting with Spark 2.0.0, the column "nullable" property is important to have correct
for the code generation to work properly. Marking the column as nullable = false used to
(<2.0.0) allow null values to be operated on, but now this will result in:
> {noformat}
> Caused by: java.lang.NullPointerException
> at org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter.write(UnsafeRowWriter.java:210)
> at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
Source)
> at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
> at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
> {noformat}
> I'm all for the change towards a more ridged behavior (enforcing correct input). But
the problem I'm facing now is that when I used JDBC to read from a Teradata server, the column
nullability is often not correct (particularly when sub-queries are involved).
> This is the line in question:
> https://github.com/apache/spark/blob/v2.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/jdbc/JDBCRDD.scala#L140
> I'm trying to work out what would be the way forward for me on this. I know that it's
really the fault of the Teradata database server not returning the correct schema, but I'll
need to make Spark itself or my application resilient to this behavior.
> One of the Teradata JDBC Driver tech leads has told me that "when the rsmd.getSchemaName
and rsmd.getTableName methods return an empty zero-length string, then the other metadata
values may not be completely accurate" - so one option could be to treat the nullability (at
least) the same way as the "unknown" case (as nullable = true). For reference, see the rest
of our discussion here: http://forums.teradata.com/forum/connectivity/teradata-jdbc-driver-returns-the-wrong-schema-column-nullability
> Any other thoughts?
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org
|