spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "koert kuipers (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (SPARK-17668) Support representing structs with case classes and tuples in spark sql udf inputs
Date Mon, 26 Sep 2016 19:49:21 GMT

     [ https://issues.apache.org/jira/browse/SPARK-17668?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

koert kuipers updated SPARK-17668:
----------------------------------
    Summary: Support representing structs with case classes and tuples in spark sql udf inputs
 (was: Support case classes and tuples to represent structs in spark sql udfs)

> Support representing structs with case classes and tuples in spark sql udf inputs
> ---------------------------------------------------------------------------------
>
>                 Key: SPARK-17668
>                 URL: https://issues.apache.org/jira/browse/SPARK-17668
>             Project: Spark
>          Issue Type: New Feature
>          Components: SQL
>    Affects Versions: 2.0.0
>            Reporter: koert kuipers
>            Priority: Minor
>
> after having gotten used to have case classes represent complex structures in Datasets,
i am surprised to find out that when i work in DataFrames with udfs no such magic exists,
and i have to fall back to manipulating Row objects, which is error prone and somewhat ugly.
> for example:
> {noformat}
> case class Person(name: String, age: Int)
> val df = Seq((Person("john", 33), 5), (Person("mike", 30), 6)).toDF("person", "id")
> val df1 = df.withColumn("person", udf({ (p: Person) => p.copy(age = p.age + 1) }).apply(col("person")))
> df1.printSchema
> df1.show
> {noformat}
> leads to:
> {noformat}
> java.lang.ClassCastException: org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
cannot be cast to Person
> {noformat}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message