spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Simeon H.K. Fitch (Jira)" <j...@apache.org>
Subject [jira] [Commented] (SPARK-13802) Fields order in Row(**kwargs) is not consistent with Schema.toInternal method
Date Wed, 02 Oct 2019 15:27:00 GMT

    [ https://issues.apache.org/jira/browse/SPARK-13802?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16942906#comment-16942906
] 

Simeon H.K. Fitch commented on SPARK-13802:
-------------------------------------------

Is there a workaround to this problem? Ordering is important when encoders are used to reify
structs into Scala types, and not being able to specify the order (without a lot of boilerplate
schema work) results in Exceptions.

> Fields order in Row(**kwargs) is not consistent with Schema.toInternal method
> -----------------------------------------------------------------------------
>
>                 Key: SPARK-13802
>                 URL: https://issues.apache.org/jira/browse/SPARK-13802
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark
>    Affects Versions: 1.6.0
>            Reporter: Szymon Matejczyk
>            Priority: Major
>
> When using Row constructor from kwargs, fields in the tuple underneath are sorted by
name. When Schema is reading the row, it is not using the fields in this order.
> {code}
> from pyspark.sql import Row
> from pyspark.sql.types import *
> schema = StructType([
>     StructField("id", StringType()),
>     StructField("first_name", StringType())])
> row = Row(id="39", first_name="Szymon")
> schema.toInternal(row)
> Out[5]: ('Szymon', '39')
> {code}
> {code}
> df = sqlContext.createDataFrame([row], schema)
> df.show(1)
> +------+----------+
> |    id|first_name|
> +------+----------+
> |Szymon|        39|
> +------+----------+
> {code}



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message