spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Marek Wiewiorka <marek.wiewio...@gmail.com>
Subject Re: Problem running a simple job in cluster standalone mode
Date Mon, 02 Sep 2013 15:54:33 GMT
The problem was due to $SCALA_HOME env variable wrongly set(it was pointing
to the old version of Scala 2.9.1 instead of 2.9.3). Resolved.
Regards,
Marek


2013/9/2 Marek Wiewiorka <marek.wiewiorka@gmail.com>

> Hi All,
> I'm testing a very simple code and it is running ok in spark-shell(both
> local and cluster standalone mode).
> I put this code also into a job and again it is running without a problem
> with master set to local but when I'm trying to run it on cluster
> (standalone mode) it seems to be starting and then quits with the error
> message:
>
> [info] Set current project to Simple Project (in build
> file:/opt/spark-jobs/)
> [info] Running SimpleJob
> 13/09/02 12:15:42 INFO slf4j.Slf4jEventHandler: Slf4jEventHandler started
> 13/09/02 12:15:42 INFO spark.SparkEnv: Registering BlockManagerMaster
> 13/09/02 12:15:42 INFO storage.MemoryStore: MemoryStore started with
> capacity 971.5 MB.
> 13/09/02 12:15:42 INFO storage.DiskStore: Created local directory at
> /tmp/spark-local-20130902121542-c534
> 13/09/02 12:15:42 INFO network.ConnectionManager: Bound socket to port
> 33575 with id = ConnectionManagerId(hadoop-jobtracker001,33575)
> 13/09/02 12:15:43 INFO storage.BlockManagerMaster: Trying to register
> BlockManager
> 13/09/02 12:15:43 INFO storage.BlockManagerMaster: Registered BlockManager
> 13/09/02 12:15:43 INFO server.Server: jetty-7.6.8.v20121106
> 13/09/02 12:15:43 INFO server.AbstractConnector: Started
> SocketConnector@0.0.0.0:48410
> 13/09/02 12:15:43 INFO broadcast.HttpBroadcast: Broadcast server started
> at http://10.10.10.21:48410
> 13/09/02 12:15:43 INFO spark.SparkEnv: Registering MapOutputTracker
> 13/09/02 12:15:43 INFO spark.HttpFileServer: HTTP File server directory is
> /tmp/spark-317014cd-55bc-4ed6-a014-b990e4eb50ba
> 13/09/02 12:15:43 INFO server.Server: jetty-7.6.8.v20121106
> 13/09/02 12:15:43 INFO server.AbstractConnector: Started
> SocketConnector@0.0.0.0:50734
> 13/09/02 12:15:43 INFO io.IoWorker: IoWorker thread 'spray-io-worker-0'
> started
> 13/09/02 12:15:43 INFO server.HttpServer:
> akka://spark/user/BlockManagerHTTPServer started on /0.0.0.0:40274
> 13/09/02 12:15:43 INFO storage.BlockManagerUI: Started BlockManager web UI
> at http://hadoop-jobtracker001:40274
> 13/09/02 12:15:43 INFO spark.SparkContext: Added JAR
> target/scala-2.9.3/simple-project_2.9.3-1.0.jar at
> http://10.10.10.21:50734/jars/simple-project_2.9.3-1.0.jar with timestamp
> 1378124143900
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Connecting to master
> spark://hadoop-name001:7077
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Connected to
> Spark cluster with app ID app-20130902121544-0013
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/0 on
> worker-20130902105957-hadoop-task-data010-53221 (hadoop-task-data010) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/0 on host hadoop-task-data010 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/1 on
> worker-20130902105957-hadoop-task-data008-39605 (hadoop-task-data008) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/1 on host hadoop-task-data008 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/2 on
> worker-20130902105957-hadoop-task-data003-36917 (hadoop-task-data003) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/2 on host hadoop-task-data003 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/3 on
> worker-20130902105957-hadoop-task-data009-51272 (hadoop-task-data009) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/3 on host hadoop-task-data009 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/4 on
> worker-20130902105957-hadoop-task-data002-37491 (hadoop-task-data002) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/4 on host hadoop-task-data002 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/5 on
> worker-20130902105957-hadoop-task-data011-47945 (hadoop-task-data011) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/5 on host hadoop-task-data011 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/6 on
> worker-20130902105957-hadoop-task-data004-41650 (hadoop-task-data004) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/6 on host hadoop-task-data004 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/7 on
> worker-20130902105957-hadoop-task-data007-40802 (hadoop-task-data007) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/7 on host hadoop-task-data007 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/8 on
> worker-20130902105957-hadoop-task-data006-55127 (hadoop-task-data006) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/8 on host hadoop-task-data006 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/9 on
> worker-20130902105957-hadoop-task-data005-38800 (hadoop-task-data005) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/9 on host hadoop-task-data005 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 INFO client.Client$ClientActor: Executor added:
> app-20130902121544-0013/10 on
> worker-20130902105957-hadoop-task-data001-56057 (hadoop-task-data001) with
> 4 cores
> 13/09/02 12:15:44 INFO cluster.SparkDeploySchedulerBackend: Granted
> executor ID app-20130902121544-0013/10 on host hadoop-task-data001 with 4
> cores, 512.0 MB RAM
> 13/09/02 12:15:44 ERROR client.Client$ClientActor: Connection to master
> failed; stopping client
> 13/09/02 12:15:44 ERROR cluster.SparkDeploySchedulerBackend: Disconnected
> from Spark cluster!
> 13/09/02 12:15:44 ERROR cluster.ClusterScheduler: Exiting due to error
> from cluster scheduler: Disconnected from Spark cluster
> 13/09/02 12:15:44 ERROR client.Client$ClientActor: Connection to master
> failed; stopping client
> 13/09/02 12:15:44 ERROR cluster.SparkDeploySchedulerBackend: Disconnected
> from Spark cluster!
> 13/09/02 12:15:44 ERROR cluster.ClusterScheduler: Exiting due to error
> from cluster scheduler: Disconnected from Spark cluster
> 13/09/02 12:15:44 ERROR actor.ActorSystemImpl: Uncaught error from thread
> [spark-akka.actor.default-dispatcher-3]
> 13/09/02 12:15:44 ERROR actor.ActorSystemImpl: Uncaught error from thread
> [spark-akka.actor.default-dispatcher-4]
> 13/09/02 12:15:44 ERROR client.Client$ClientActor: Master removed our
> application: FINISHED; stopping client
> 13/09/02 12:15:44 ERROR cluster.SparkDeploySchedulerBackend: Disconnected
> from Spark cluster!
> 13/09/02 12:15:44 ERROR cluster.ClusterScheduler: Exiting due to error
> from cluster scheduler: Disconnected from Spark cluster
> 13/09/02 12:15:44 ERROR client.Client$ClientActor: Connection to master
> failed; stopping client
> 13/09/02 12:15:44 ERROR cluster.SparkDeploySchedulerBackend: Disconnected
> from Spark cluster!
> 13/09/02 12:15:44 ERROR cluster.ClusterScheduler: Exiting due to error
> from cluster scheduler: Disconnected from Spark cluster
> 13/09/02 12:15:44 ERROR actor.ActorSystemImpl: Uncaught error from thread
> [spark-akka.actor.default-dispatcher-1]
> 13/09/02 12:15:44 ERROR actor.ActorSystemImpl: Uncaught error from thread
> [spark-akka.actor.default-dispatcher-1]
> 13/09/02 12:15:45 INFO storage.MemoryStore: ensureFreeSpace(90796) called
> with curMem=0, maxMem=1018712555
> 13/09/02 12:15:45 INFO storage.MemoryStore: Block broadcast_0 stored as
> values to memory (estimated size 88.7 KB, free 971.4 MB)
> 13/09/02 12:15:45 INFO network.ConnectionManager: Selector thread was
> interrupted!
>
>
> I'm running it using sbt run command.
> The work dir on worker nodes are empty (stderr and stdout files empty as
> well)
> Spark Master log has no other entries.
>
> Has anybody had a similar problem before?
> Regards,
> Marek
>
>

Mime
View raw message