spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Josh Rosen <rosenvi...@gmail.com>
Subject Re: flatten RDD[RDD[T]]
Date Mon, 03 Mar 2014 02:10:03 GMT
Nope, nested RDDs aren't supported:

https://groups.google.com/d/msg/spark-users/_Efj40upvx4/DbHCixW7W7kJ
https://groups.google.com/d/msg/spark-users/KC1UJEmUeg8/N_qkTJ3nnxMJ
https://groups.google.com/d/msg/spark-users/rkVPXAiCiBk/CORV5jyeZpAJ


On Sun, Mar 2, 2014 at 5:37 PM, Cosmin Radoi <cosmin.radoi@gmail.com> wrote:

>
> I'm trying to flatten an RDD of RDDs. The straightforward approach:
>
> a: [RDD[RDD[Int]]
> a flatMap { _.collect }
>
> throws a java.lang.NullPointerException at
> org.apache.spark.rdd.RDD.collect(RDD.scala:602)
>
> In a more complex scenario I also got:
> Task not serializable: java.io.NotSerializableException:
> org.apache.spark.SparkContext
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)
>
> So I guess this may be related to the context not being available inside
> the map.
>
> Are nested RDDs not supported?
>
> Thanks,
>
> Cosmin Radoi
>
>

Mime
View raw message