spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Russell Jurney <russell.jur...@gmail.com>
Subject Re: hadoopRDD stalls reading entire directory
Date Mon, 02 Jun 2014 21:02:28 GMT
Nothing appears to be running on hivecluster2:8080.

'sudo jps' does show

[hivedata@hivecluster2 ~]$ sudo jps
9953 PepAgent
13797 JournalNode
7618 NameNode
6574 Jps
12716 Worker
16671 RunJar
18675 Main
18177 JobTracker
10918 Master
18139 TaskTracker
7674 DataNode


I kill all processes listed. I restart Spark Master on hivecluster2:

[hivedata@hivecluster2 ~]$ sudo
/opt/cloudera/parcels/SPARK/lib/spark/sbin/start-master.sh

starting org.apache.spark.deploy.master.Master, logging to
/var/log/spark/spark-root-org.apache.spark.deploy.master.Master-1-hivecluster2.out

I run the spark shell again:

[hivedata@hivecluster2 ~]$ spark-shell -usejavacp -classpath "*.jar"
14/06/02 13:52:13 INFO spark.HttpServer: Starting HTTP Server
14/06/02 13:52:13 INFO server.Server: jetty-7.6.8.v20121106
14/06/02 13:52:13 INFO server.AbstractConnector: Started
SocketConnector@0.0.0.0:52814
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 0.9.0
      /_/

Using Scala version 2.10.3 (Java HotSpot(TM) 64-Bit Server VM, Java
1.6.0_31)
Type in expressions to have them evaluated.
Type :help for more information.
14/06/02 13:52:19 INFO slf4j.Slf4jLogger: Slf4jLogger started
14/06/02 13:52:19 INFO Remoting: Starting remoting
14/06/02 13:52:19 INFO Remoting: Remoting started; listening on addresses
:[akka.tcp://spark@hivecluster2:46033]
14/06/02 13:52:19 INFO Remoting: Remoting now listens on addresses:
[akka.tcp://spark@hivecluster2:46033]
14/06/02 13:52:19 INFO spark.SparkEnv: Registering BlockManagerMaster
14/06/02 13:52:19 INFO storage.DiskBlockManager: Created local directory at
/tmp/spark-local-20140602135219-bd8a
14/06/02 13:52:19 INFO storage.MemoryStore: MemoryStore started with
capacity 294.4 MB.
14/06/02 13:52:19 INFO network.ConnectionManager: Bound socket to port
50645 with id = ConnectionManagerId(hivecluster2,50645)
14/06/02 13:52:19 INFO storage.BlockManagerMaster: Trying to register
BlockManager
14/06/02 13:52:19 INFO storage.BlockManagerMasterActor$BlockManagerInfo:
Registering block manager hivecluster2:50645 with 294.4 MB RAM
14/06/02 13:52:19 INFO storage.BlockManagerMaster: Registered BlockManager
14/06/02 13:52:19 INFO spark.HttpServer: Starting HTTP Server
14/06/02 13:52:19 INFO server.Server: jetty-7.6.8.v20121106
14/06/02 13:52:19 INFO server.AbstractConnector: Started
SocketConnector@0.0.0.0:36103
14/06/02 13:52:19 INFO broadcast.HttpBroadcast: Broadcast server started at
http://10.10.30.211:36103
14/06/02 13:52:19 INFO spark.SparkEnv: Registering MapOutputTracker
14/06/02 13:52:19 INFO spark.HttpFileServer: HTTP File server directory is
/tmp/spark-ecce4c62-fef6-4369-a3d5-e3d7cbd1e00c
14/06/02 13:52:19 INFO spark.HttpServer: Starting HTTP Server
14/06/02 13:52:19 INFO server.Server: jetty-7.6.8.v20121106
14/06/02 13:52:19 INFO server.AbstractConnector: Started
SocketConnector@0.0.0.0:37662
14/06/02 13:52:19 INFO server.Server: jetty-7.6.8.v20121106
14/06/02 13:52:19 INFO handler.ContextHandler: started
o.e.j.s.h.ContextHandler{/storage/rdd,null}
14/06/02 13:52:19 INFO handler.ContextHandler: started
o.e.j.s.h.ContextHandler{/storage,null}
14/06/02 13:52:19 INFO handler.ContextHandler: started
o.e.j.s.h.ContextHandler{/stages/stage,null}
14/06/02 13:52:19 INFO handler.ContextHandler: started
o.e.j.s.h.ContextHandler{/stages/pool,null}
14/06/02 13:52:19 INFO handler.ContextHandler: started
o.e.j.s.h.ContextHandler{/stages,null}
14/06/02 13:52:19 INFO handler.ContextHandler: started
o.e.j.s.h.ContextHandler{/environment,null}
14/06/02 13:52:19 INFO handler.ContextHandler: started
o.e.j.s.h.ContextHandler{/executors,null}
14/06/02 13:52:19 INFO handler.ContextHandler: started
o.e.j.s.h.ContextHandler{/metrics/json,null}
14/06/02 13:52:19 INFO handler.ContextHandler: started
o.e.j.s.h.ContextHandler{/static,null}
14/06/02 13:52:19 INFO handler.ContextHandler: started
o.e.j.s.h.ContextHandler{/,null}
14/06/02 13:52:19 INFO server.AbstractConnector: Started
SelectChannelConnector@0.0.0.0:4040
14/06/02 13:52:19 INFO ui.SparkUI: Started Spark Web UI at
*http://hivecluster2:4040
<http://hivecluster2:4040>*
14/06/02 13:52:19 INFO client.AppClient$ClientActor: Connecting to master
spark://hivecluster2:7077...
14/06/02 13:52:20 INFO cluster.SparkDeploySchedulerBackend: Connected to
Spark cluster with app ID app-20140602135220-0000
Created spark context..
Spark context available as sc.


Note that the Spark Web UI is running at hivecluster2:4040, I get the UI
when I go there. I verify again that nothing exists at hivecluster2:8080.

I try to run my code:

...

val sparkConf = new SparkConf()
sparkConf.setMaster("spark://hivecluster2:7077")
sparkConf.setAppName("Test Spark App")
sparkConf.setJars(Array("avro-1.7.6.jar", "avro-mapred-1.7.6.jar"))
val sc = new SparkContext(sparkConf)

This produces a new spark server(!) at port 4041:


14/06/02 13:55:31 INFO server.AbstractConnector: Started
SelectChannelConnector@0.0.0.0:4041
14/06/02 13:55:31 INFO ui.SparkUI: Started Spark Web UI at
http://hivecluster2:4041
14/06/02 13:55:31 INFO spark.SparkContext: Added JAR avro-1.7.6.jar at
http://10.10.30.211:49845/jars/avro-1.7.6.jar with timestamp 1401742531616
14/06/02 13:55:31 INFO spark.SparkContext: Added JAR avro-mapred-1.7.6.jar
at http://10.10.30.211:49845/jars/avro-mapred-1.7.6.jar with timestamp
1401742531617
14/06/02 13:55:31 INFO client.AppClient$ClientActor: Connecting to master
spark://hivecluster2:7077...
14/06/02 13:55:31 INFO cluster.SparkDeploySchedulerBackend: Connected to
Spark cluster with app ID app-20140602135531-0001
sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext@2e9329e9


I run the rest of my code...

val input =
"hdfs://hivecluster2/securityx/web_proxy_mef/2014/05/29/22/*.avro"//part-m-000{15,16}.avro"

val jobConf= new JobConf(sc.hadoopConfiguration)
jobConf.setJobName("Test Scala Job")
FileInputFormat.setInputPaths(jobConf, input)

val rdd = sc.hadoopRDD(
  //confBroadcast.value.value,
  jobConf,
  classOf[org.apache.avro.mapred.AvroInputFormat[GenericRecord]],
  classOf[org.apache.avro.mapred.AvroWrapper[GenericRecord]],
  classOf[org.apache.hadoop.io.NullWritable],
  1)

val f1 = rdd.first


I get this:

14/06/02 14:00:36 INFO mapred.FileInputFormat: Total input paths to process
: 17
14/06/02 14:00:36 INFO spark.SparkContext: Starting job: first at
<console>:47
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Got job 0 (first at
<console>:47) with 1 output partitions (allowLocal=true)
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Final stage: Stage 0 (first
at <console>:47)
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Parents of final stage:
List()
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Missing parents: List()
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Computing the requested
partition locally
14/06/02 14:00:36 INFO rdd.HadoopRDD: Input split:
hdfs://hivecluster2/securityx/web_proxy_mef/2014/05/29/22/part-m-00000.avro:0+3864
14/06/02 14:00:36 INFO spark.SparkContext: Job finished: first at
<console>:47, took 0.374416468 s
14/06/02 14:00:36 INFO spark.SparkContext: Starting job: first at
<console>:47
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Got job 1 (first at
<console>:47) with 16 output partitions (allowLocal=true)
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Final stage: Stage 1 (first
at <console>:47)
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Parents of final stage:
List()
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Missing parents: List()
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Submitting Stage 1
(HadoopRDD[0] at hadoopRDD at <console>:45), which has no missing parents
14/06/02 14:00:36 INFO scheduler.DAGScheduler: Submitting 16 missing tasks
from Stage 1 (HadoopRDD[0] at hadoopRDD at <console>:45)
14/06/02 14:00:36 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0
with 16 tasks
14/06/02 14:00:51 WARN scheduler.TaskSchedulerImpl: Initial job has not
accepted any resources; check your cluster UI to ensure that workers are
registered and have sufficient memory


I see my job at http://hivecluster2:4041, but not at hivecluster2:4040.
Task succeeded, 0/16.

How do I instantiate a new SparkContext without creating a new web server
thing? That seems to be the issue.

Russ


On Mon, Jun 2, 2014 at 1:19 PM, Aaron Davidson <ilikerps@gmail.com> wrote:

> You may have to do "sudo jps", because it should definitely list your
> processes.
>
> What does hivecluster2:8080 look like? My guess is it says there are 2
> applications registered, and one has taken all the executors. There must be
> two applications running, as those are the only things that keep open those
> 4040/4041 ports.
>
>
> On Mon, Jun 2, 2014 at 11:32 AM, Russell Jurney <russell.jurney@gmail.com>
> wrote:
>
>> If it matters, I have servers running at
>> http://hivecluster2:4040/stages/ and http://hivecluster2:4041/stages/
>>
>> When I run rdd.first, I see an item at
>> http://hivecluster2:4041/stages/ but no tasks are running. Stage ID 1,
>> first at <console>:46, Tasks: Succeeded/Total 0/16.
>>
>> On Mon, Jun 2, 2014 at 10:09 AM, Russell Jurney
>> <russell.jurney@gmail.com> wrote:
>> > Looks like just worker and master processes are running:
>> >
>> > [hivedata@hivecluster2 ~]$ jps
>> >
>> > 10425 Jps
>> >
>> > [hivedata@hivecluster2 ~]$ ps aux|grep spark
>> >
>> > hivedata 10424  0.0  0.0 103248   820 pts/3    S+   10:05   0:00 grep
>> spark
>> >
>> > root     10918  0.5  1.4 4752880 230512 ?      Sl   May27  41:43 java
>> -cp
>> >
>> :/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/conf:/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/core/lib/*:/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/repl/lib/*:/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/examples/lib/*:/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/bagel/lib/*:/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/mllib/lib/*:/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/streaming/lib/*:/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/lib/*:/etc/hadoop/conf:/opt/cloudera/parcels/CDH/lib/hadoop/*:/opt/cloudera/parcels/CDH/lib/hadoop/../hadoop-hdfs/*:/opt/cloudera/parcels/CDH/lib/hadoop/../hadoop-yarn/*:/opt/cloudera/parcels/CDH/lib/hadoop/../hadoop-mapreduce/*:/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/lib/scala-library.jar:/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/lib/scala-compiler.jar:/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/lib/jline.jar
>> > -Dspark.akka.logLifecycleEvents=true
>> >
>> -Djava.library.path=/opt/cloudera/parcels/SPARK-0.9.0-1.cdh4.6.0.p0.98/lib/spark/lib:/opt/cloudera/parcels/CDH/lib/hadoop/lib/native
>> > -Xms512m -Xmx512m org.apache.spark.deploy.master.Master --ip
>> hivecluster2
>> > --port 7077 --webui-port 18080
>> >
>> > root     12715  0.0  0.0 148028   656 ?        S    May27   0:00 sudo
>> > /opt/cloudera/parcels/SPARK/lib/spark/bin/spark-class
>> > org.apache.spark.deploy.worker.Worker spark://hivecluster2:7077
>> >
>> > root     12716  0.3  1.1 4155884 191340 ?      Sl   May27  30:21 java
>> -cp
>> >
>> :/opt/cloudera/parcels/SPARK/lib/spark/conf:/opt/cloudera/parcels/SPARK/lib/spark/core/lib/*:/opt/cloudera/parcels/SPARK/lib/spark/repl/lib/*:/opt/cloudera/parcels/SPARK/lib/spark/examples/lib/*:/opt/cloudera/parcels/SPARK/lib/spark/bagel/lib/*:/opt/cloudera/parcels/SPARK/lib/spark/mllib/lib/*:/opt/cloudera/parcels/SPARK/lib/spark/streaming/lib/*:/opt/cloudera/parcels/SPARK/lib/spark/lib/*:/etc/hadoop/conf:/opt/cloudera/parcels/CDH/lib/hadoop/*:/opt/cloudera/parcels/CDH/lib/hadoop/../hadoop-hdfs/*:/opt/cloudera/parcels/CDH/lib/hadoop/../hadoop-yarn/*:/opt/cloudera/parcels/CDH/lib/hadoop/../hadoop-mapreduce/*:/opt/cloudera/parcels/SPARK/lib/spark/lib/scala-library.jar:/opt/cloudera/parcels/SPARK/lib/spark/lib/scala-compiler.jar:/opt/cloudera/parcels/SPARK/lib/spark/lib/jline.jar
>> > -Dspark.akka.logLifecycleEvents=true
>> >
>> -Djava.library.path=/opt/cloudera/parcels/SPARK/lib/spark/lib:/opt/cloudera/parcels/CDH/lib/hadoop/lib/native
>> > -Xms512m -Xmx512m org.apache.spark.deploy.worker.Worker
>> > spark://hivecluster2:7077
>> >
>> >
>> >
>> >
>> > On Sun, Jun 1, 2014 at 7:41 PM, Aaron Davidson <ilikerps@gmail.com>
>> wrote:
>> >>
>> >> Sounds like you have two shells running, and the first one is talking
>> all
>> >> your resources. Do a "jps" and kill the other guy, then try again.
>> >>
>> >> By the way, you can look at http://localhost:8080 (replace localhost
>> with
>> >> the server your Spark Master is running on) to see what applications
>> are
>> >> currently started, and what resource allocations they have.
>> >>
>> >>
>> >> On Sun, Jun 1, 2014 at 6:47 PM, Russell Jurney <
>> russell.jurney@gmail.com>
>> >> wrote:
>> >>>
>> >>> Thanks again. Run results here:
>> >>> https://gist.github.com/rjurney/dc0efae486ba7d55b7d5
>> >>>
>> >>> This time I get a port already in use exception on 4040, but it isn't
>> >>> fatal. Then when I run rdd.first, I get this over and over:
>> >>>
>> >>> 14/06/01 18:35:40 WARN scheduler.TaskSchedulerImpl: Initial job has
>> not
>> >>> accepted any resources; check your cluster UI to ensure that workers
>> are
>> >>> registered and have sufficient memory
>> >>>
>> >>>
>> >>>
>> >>>
>> >>>
>> >>>
>> >>>
>> >>> On Sun, Jun 1, 2014 at 3:09 PM, Aaron Davidson <ilikerps@gmail.com>
>> >>> wrote:
>> >>>>
>> >>>> You can avoid that by using the constructor that takes a SparkConf,
>> a la
>> >>>>
>> >>>> val conf = new SparkConf()
>> >>>> conf.setJars("avro.jar", ...)
>> >>>> val sc = new SparkContext(conf)
>> >>>>
>> >>>>
>> >>>> On Sun, Jun 1, 2014 at 2:32 PM, Russell Jurney
>> >>>> <russell.jurney@gmail.com> wrote:
>> >>>>>
>> >>>>> Followup question: the docs to make a new SparkContext require
that
>> I
>> >>>>> know where $SPARK_HOME is. However, I have no idea. Any idea
where
>> that
>> >>>>> might be?
>> >>>>>
>> >>>>>
>> >>>>> On Sun, Jun 1, 2014 at 10:28 AM, Aaron Davidson <ilikerps@gmail.com
>> >
>> >>>>> wrote:
>> >>>>>>
>> >>>>>> Gotcha. The easiest way to get your dependencies to your
Executors
>> >>>>>> would probably be to construct your SparkContext with all
>> necessary jars
>> >>>>>> passed in (as the "jars" parameter), or inside a SparkConf
with
>> setJars().
>> >>>>>> Avro is a "necessary jar", but it's possible your application
also
>> needs to
>> >>>>>> distribute other ones to the cluster.
>> >>>>>>
>> >>>>>> An easy way to make sure all your dependencies get shipped
to the
>> >>>>>> cluster is to create an assembly jar of your application,
and then
>> you just
>> >>>>>> need to tell Spark about that jar, which includes all your
>> application's
>> >>>>>> transitive dependencies. Maven and sbt both have pretty
>> straightforward ways
>> >>>>>> of producing assembly jars.
>> >>>>>>
>> >>>>>>
>> >>>>>> On Sat, May 31, 2014 at 11:23 PM, Russell Jurney
>> >>>>>> <russell.jurney@gmail.com> wrote:
>> >>>>>>>
>> >>>>>>> Thanks for the fast reply.
>> >>>>>>>
>> >>>>>>> I am running CDH 4.4 with the Cloudera Parcel of Spark
0.9.0, in
>> >>>>>>> standalone mode.
>> >>>>>>>
>> >>>>>>>
>> >>>>>>> On Saturday, May 31, 2014, Aaron Davidson <ilikerps@gmail.com>
>> wrote:
>> >>>>>>>>
>> >>>>>>>> First issue was because your cluster was configured
incorrectly.
>> You
>> >>>>>>>> could probably read 1 file because that was done
on the driver
>> node, but
>> >>>>>>>> when it tried to run a job on the cluster, it failed.
>> >>>>>>>>
>> >>>>>>>> Second issue, it seems that the jar containing avro
is not
>> getting
>> >>>>>>>> propagated to the Executors. What version of Spark
are you
>> running on? What
>> >>>>>>>> deployment mode (YARN, standalone, Mesos)?
>> >>>>>>>>
>> >>>>>>>>
>> >>>>>>>> On Sat, May 31, 2014 at 9:37 PM, Russell Jurney
>> >>>>>>>> <russell.jurney@gmail.com> wrote:
>> >>>>>>>>
>> >>>>>>>> Now I get this:
>> >>>>>>>>
>> >>>>>>>> scala> rdd.first
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO spark.SparkContext: Starting
job: first at
>> >>>>>>>> <console>:41
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Got
job 4 (first
>> at
>> >>>>>>>> <console>:41) with 1 output partitions (allowLocal=true)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Final
stage:
>> Stage 4
>> >>>>>>>> (first at <console>:41)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Parents
of final
>> >>>>>>>> stage: List()
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Missing
parents:
>> >>>>>>>> List()
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Computing
the
>> >>>>>>>> requested partition locally
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO rdd.HadoopRDD: Input split:
>> >>>>>>>>
>> hdfs://hivecluster2/securityx/web_proxy_mef/2014/05/29/22/part-m-00000.avro:0+3864
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO spark.SparkContext: Job finished:
first at
>> >>>>>>>> <console>:41, took 0.037371256 s
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO spark.SparkContext: Starting
job: first at
>> >>>>>>>> <console>:41
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Got
job 5 (first
>> at
>> >>>>>>>> <console>:41) with 16 output partitions (allowLocal=true)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Final
stage:
>> Stage 5
>> >>>>>>>> (first at <console>:41)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Parents
of final
>> >>>>>>>> stage: List()
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Missing
parents:
>> >>>>>>>> List()
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Submitting
Stage 5
>> >>>>>>>> (HadoopRDD[0] at hadoopRDD at <console>:37),
which has no
>> missing parents
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.DAGScheduler: Submitting
16
>> missing
>> >>>>>>>> tasks from Stage 5 (HadoopRDD[0] at hadoopRDD at
<console>:37)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSchedulerImpl:
Adding task
>> set
>> >>>>>>>> 5.0 with 16 tasks
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> 5.0:0
>> >>>>>>>> as TID 92 on executor 2: hivecluster3 (NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:0 as 1294 bytes in 1 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> 5.0:3
>> >>>>>>>> as TID 93 on executor 1: hivecluster5.labs.lan (NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:3 as 1294 bytes in 0 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> 5.0:1
>> >>>>>>>> as TID 94 on executor 4: hivecluster4 (NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:1 as 1294 bytes in 1 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> 5.0:2
>> >>>>>>>> as TID 95 on executor 0: hivecluster6.labs.lan (NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:2 as 1294 bytes in 0 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> 5.0:4
>> >>>>>>>> as TID 96 on executor 3: hivecluster1.labs.lan (NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:4 as 1294 bytes in 0 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> 5.0:6
>> >>>>>>>> as TID 97 on executor 2: hivecluster3 (NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:6 as 1294 bytes in 0 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> 5.0:5
>> >>>>>>>> as TID 98 on executor 1: hivecluster5.labs.lan (NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:5 as 1294 bytes in 0 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> 5.0:8
>> >>>>>>>> as TID 99 on executor 4: hivecluster4 (NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:8 as 1294 bytes in 0 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> 5.0:7
>> >>>>>>>> as TID 100 on executor 0: hivecluster6.labs.lan
(NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:7 as 1294 bytes in 0 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> >>>>>>>> 5.0:10 as TID 101 on executor 3: hivecluster1.labs.lan
>> (NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:10 as 1294 bytes in 0 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> >>>>>>>> 5.0:14 as TID 102 on executor 2: hivecluster3 (NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:14 as 1294 bytes in 0 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> 5.0:9
>> >>>>>>>> as TID 103 on executor 1: hivecluster5.labs.lan
(NODE_LOCAL)
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Serialized task
>> >>>>>>>> 5.0:9 as 1294 bytes in 0 ms
>> >>>>>>>>
>> >>>>>>>> 14/05/31 21:36:28 INFO scheduler.TaskSetManager:
Starting task
>> >>>>>>>> 5.0:11 as TID 104 on executor 4: hivecluster4 (N
>> >>>>>>>
>> >>>>>>>
>> >>>>>>>
>> >>>>>>> --
>> >>>>>>> Russell Jurney twitter.com/rjurney russell.jurney@gmail.com
>> >>>>>>> datasyndrome.com
>> >>>>>>
>> >>>>>>
>> >>>>>
>> >>>>>
>> >>>>>
>> >>>>> --
>> >>>>> Russell Jurney twitter.com/rjurney russell.jurney@gmail.com
>> >>>>> datasyndrome.com
>> >>>>
>> >>>>
>> >>>
>> >>>
>> >>>
>> >>> --
>> >>> Russell Jurney twitter.com/rjurney russell.jurney@gmail.com
>> >>> datasyndrome.com
>> >>
>> >>
>> >
>> >
>> >
>> > --
>> > Russell Jurney twitter.com/rjurney russell.jurney@gmail.com
>> datasyndrome.com
>>
>>
>>
>> --
>> Russell Jurney twitter.com/rjurney russell.jurney@gmail.com
>> datasyndrome.com
>>
>
>


-- 
Russell Jurney twitter.com/rjurney russell.jurney@gmail.com datasyndrome.com

Mime
View raw message