Do you mind sharing the size of your cluster and the production data volumes ? 


On Jul 7, 2014, at 3:39 PM, Daniel Siegmann <daniel.siegmann@velos.io> wrote:

From a development perspective, I vastly prefer Spark to MapReduce. The MapReduce API is very constrained; Spark's API feels much more natural to me. Testing and local development is also very easy - creating a local Spark context is trivial and it reads local files. For your unit tests you can just have them create a local context and execute your flow with some test data. Even better, you can do ad-hoc work in the Spark shell and if you want that in your production code it will look exactly the same.

Unfortunately, the picture isn't so rosy when it gets to production. In my experience, Spark simply doesn't scale to the volumes that MapReduce will handle. Not with a Standalone cluster anyway - maybe Mesos or YARN would be better, but I haven't had the opportunity to try them. I find jobs tend to just hang forever for no apparent reason on large data sets (but smaller than what I push through MapReduce).

I am hopeful the situation will improve - Spark is developing quickly - but if you have large amounts of data you should proceed with caution.

Keep in mind there are some frameworks for Hadoop which can hide the ugly MapReduce with something very similar in form to Spark's API; e.g. Apache Crunch. So you might consider those as well.

(Note: the above is with Spark 1.0.0.)

On Mon, Jul 7, 2014 at 11:07 AM, <santosh.viswanathan@accenture.com> wrote:

Hello Experts,


I am doing some comparative study on the below:


Spark vs Impala

Spark vs MapREduce . Is it worth migrating from existing MR implementation to Spark?



Please share your thoughts and expertise.




This message is for the designated recipient only and may contain privileged, proprietary, or otherwise confidential information. If you have received it in error, please notify the sender immediately and delete the original. Any other use of the e-mail by you is prohibited. Where allowed by local law, electronic communications with Accenture and its affiliates, including e-mail and instant messaging (including content), may be scanned by our systems for the purposes of information security and assessment of internal compliance with Accenture policy.


Daniel Siegmann, Software Developer
Accelerating Machine Learning

E: daniel.siegmann@velos.io W: www.velos.io