spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Cheng Lian <lian.cs....@gmail.com>
Subject Re: SparkSQL + Hive Cached Table Exception
Date Sun, 02 Nov 2014 03:56:34 GMT
Just submitted a PR to fix this https://github.com/apache/spark/pull/3059

On Sun, Nov 2, 2014 at 12:36 AM, Jean-Pascal Billaud <jp@tellapart.com>
wrote:

> Great! Thanks.
>
> Sent from my iPad
>
> On Nov 1, 2014, at 8:35 AM, Cheng Lian <lian.cs.zju@gmail.com> wrote:
>
> Hi Jean,
>
> Thanks for reporting this. This is indeed a bug: some column types
> (Binary, Array, Map and Struct, and unfortunately for some reason,
> Boolean), a NoopColumnStats is used to collect column statistics, which
> causes this issue. Filed SPARK-4182 to track this issue, will fix this ASAP.
>
> Cheng
>
> On Fri, Oct 31, 2014 at 7:04 AM, Jean-Pascal Billaud <jp@tellapart.com>
> wrote:
>
>> Hi,
>>
>> While testing SparkSQL on top of our Hive metastore, I am getting
>> some java.lang.ArrayIndexOutOfBoundsException while reusing a cached RDD
>> table.
>>
>> Basically, I have a table "mtable" partitioned by some "date" field in
>> hive and below is the scala code I am running in spark-shell:
>>
>> val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc);
>> val rdd_mtable = sqlContext.sql("select * from mtable where
>> date=20141028");
>> rdd_mtable.registerTempTable("rdd_mtable");
>> sqlContext.cacheTable("rdd_mtable");
>> sqlContext.sql("select count(*) from rdd_mtable").collect(); <-- OK
>> sqlContext.sql("select count(*) from rdd_mtable").collect(); <-- Exception
>>
>> So the first collect() is working just fine, however running the second
>> collect() which I expect use the cached RDD throws some
>> java.lang.ArrayIndexOutOfBoundsException, see the backtrace at the end of
>> this email. It seems the columnar traversal is crashing for some reasons.
>> FYI, I am using spark ToT (234de9232bcfa212317a8073c4a82c3863b36b14).
>>
>> java.lang.ArrayIndexOutOfBoundsException: 14
>> at
>> org.apache.spark.sql.catalyst.expressions.GenericRow.apply(Row.scala:142)
>> at
>> org.apache.spark.sql.catalyst.expressions.BoundReference.eval(BoundAttribute.scala:37)
>> at
>> org.apache.spark.sql.catalyst.expressions.Expression.n2(Expression.scala:108)
>> at org.apache.spark.sql.catalyst.expressions.Add.eval(arithmetic.scala:89)
>> at
>> org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$computeSizeInBytes$1.apply(InMemoryColumnarTableScan.scala:66)
>> at
>> org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$computeSizeInBytes$1.apply(InMemoryColumnarTableScan.scala:66)
>> at
>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>> at
>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>> at
>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>> at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>> at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>> at
>> org.apache.spark.sql.columnar.InMemoryRelation.computeSizeInBytes(InMemoryColumnarTableScan.scala:66)
>> at
>> org.apache.spark.sql.columnar.InMemoryRelation.statistics(InMemoryColumnarTableScan.scala:87)
>> at
>> org.apache.spark.sql.columnar.InMemoryRelation.statisticsToBePropagated(InMemoryColumnarTableScan.scala:73)
>> at
>> org.apache.spark.sql.columnar.InMemoryRelation.withOutput(InMemoryColumnarTableScan.scala:147)
>> at
>> org.apache.spark.sql.CacheManager$$anonfun$useCachedData$1$$anonfun$applyOrElse$1.apply(CacheManager.scala:122)
>> at
>> org.apache.spark.sql.CacheManager$$anonfun$useCachedData$1$$anonfun$applyOrElse$1.apply(CacheManager.scala:122)
>> at scala.Option.map(Option.scala:145)
>> at
>> org.apache.spark.sql.CacheManager$$anonfun$useCachedData$1.applyOrElse(CacheManager.scala:122)
>> at
>> org.apache.spark.sql.CacheManager$$anonfun$useCachedData$1.applyOrElse(CacheManager.scala:119)
>> at
>> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144)
>> at
>> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:162)
>> at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>> at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>> at
>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>> at
>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>> at
>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>> at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>> at
>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>> at
>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>> at
>> org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:191)
>> at
>> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:147)
>> at
>> org.apache.spark.sql.CacheManager$class.useCachedData(CacheManager.scala:119)
>> at org.apache.spark.sql.SQLContext.useCachedData(SQLContext.scala:49)
>> at
>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:376)
>> at
>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:376)
>> at
>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:377)
>> at
>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:377)
>> at
>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:382)
>> at
>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:380)
>> at
>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:386)
>> at
>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:386)
>>
>> Thanks,
>>
>
>

Mime
View raw message