spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Corey Nolet <cjno...@gmail.com>
Subject Re: Spark SQL takes unexpected time
Date Tue, 04 Nov 2014 13:19:18 GMT
Michael,

I should probably look closer myself @ the design of 1.2 vs 1.1 but I've
been curious why Spark's in-memory data uses the heap instead of putting it
off heap? Was this the optimization that was done in 1.2 to alleviate GC?

On Mon, Nov 3, 2014 at 8:52 PM, Shailesh Birari <sbirari@wynyardgroup.com>
wrote:

> Yes, I am using Spark1.1.0 and have used rdd.registerTempTable().
> I tried by adding sqlContext.cacheTable(), but it took 59 seconds (more
> than
> earlier).
>
> I also tried by changing schema to use Long data type in some fields but
> seems conversion takes more time.
> Is there any way to specify index ?  Though I checked and didn't found any,
> just want to confirm.
>
> For your reference here is the snippet of code.
>
>
> -----------------------------------------------------------------------------------------------------------------
> case class EventDataTbl(EventUID: Long,
>                 ONum: Long,
>                 RNum: Long,
>                 Timestamp: java.sql.Timestamp,
>                 Duration: String,
>                 Type: String,
>                 Source: String,
>                 OName: String,
>                 RName: String)
>
>                 val format = new java.text.SimpleDateFormat("yyyy-MM-dd
> hh:mm:ss")
>                 val cedFileName =
> "hdfs://hadoophost:8020/demo/poc/JoinCsv/output_2"
>                 val cedRdd = sc.textFile(cedFileName).map(_.split(",",
> -1)).map(p =>
> EventDataTbl(p(0).toLong, p(1).toLong, p(2).toLong, new
> java.sql.Timestamp(format.parse(p(3)).getTime()), p(4), p(5), p(6), p(7),
> p(8)))
>
>                 cedRdd.registerTempTable("EventDataTbl")
>                 sqlCntxt.cacheTable("EventDataTbl")
>
>                 val t1 = System.nanoTime()
>                 println("\n\n10 Most frequent conversations between the
> Originators and
> Recipients\n")
>                 sql("SELECT COUNT(*) AS Frequency,ONum,OName,RNum,RName
> FROM EventDataTbl
> GROUP BY ONum,OName,RNum,RName ORDER BY Frequency DESC LIMIT
> 10").collect().foreach(println)
>                 val t2 = System.nanoTime()
>                 println("Time taken " + (t2-t1)/1000000000.0 + " Seconds")
>
>
> -----------------------------------------------------------------------------------------------------------------
>
> Thanks,
>   Shailesh
>
>
>
> --
> View this message in context:
> http://apache-spark-user-list.1001560.n3.nabble.com/Spark-SQL-takes-unexpected-time-tp17925p18017.html
> Sent from the Apache Spark User List mailing list archive at Nabble.com.
>
> ---------------------------------------------------------------------
> To unsubscribe, e-mail: user-unsubscribe@spark.apache.org
> For additional commands, e-mail: user-help@spark.apache.org
>
>

Mime
View raw message