spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Sameer Tilak <ssti...@live.com>
Subject MLLIb: Linear regression: Loss was due to java.lang.ArrayIndexOutOfBoundsException
Date Mon, 08 Dec 2014 20:54:37 GMT








Hi All,
I was able to run LinearRegressionwithSGD for a largeer dataset (> 2GB sparse). I have
now filtered the data and I am running regression on a subset of it  (~ 200 MB). I see this
error, which is strange since it was running fine with the superset data. Is this a formatting
issue (which I doubt) or is this some other issue in data preparation? I confirmed that there
is no empty line in my dataset. Any help with this will be highly appreciated.


14/12/08 20:32:03 WARN TaskSetManager: Lost TID 5 (task 3.0:1)
14/12/08 20:32:03 WARN TaskSetManager: Loss was due to java.lang.ArrayIndexOutOfBoundsException
java.lang.ArrayIndexOutOfBoundsException: 150323
	at breeze.linalg.operators.DenseVector_SparseVector_Ops$$anon$129.apply(SparseVectorOps.scala:231)
	at breeze.linalg.operators.DenseVector_SparseVector_Ops$$anon$129.apply(SparseVectorOps.scala:216)
	at breeze.linalg.operators.BinaryRegistry$class.apply(BinaryOp.scala:60)
	at breeze.linalg.VectorOps$$anon$178.apply(Vector.scala:391)
	at breeze.linalg.NumericOps$class.dot(NumericOps.scala:83)
	at breeze.linalg.DenseVector.dot(DenseVector.scala:47)
	at org.apache.spark.mllib.optimization.LeastSquaresGradient.compute(Gradient.scala:125)
	at org.apache.spark.mllib.optimization.GradientDescent$$anonfun$runMiniBatchSGD$1$$anonfun$1.apply(GradientDescent.scala:180)
	at org.apache.spark.mllib.optimization.GradientDescent$$anonfun$runMiniBatchSGD$1$$anonfun$1.apply(GradientDescent.scala:179)
	at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:144)
	at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:144)
	at scala.collection.Iterator$class.foreach(Iterator.scala:727)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:144)
	at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.aggregate(TraversableOnce.scala:201)
	at scala.collection.AbstractIterator.aggregate(Iterator.scala:1157)
	at org.apache.spark.rdd.RDD$$anonfun$21.apply(RDD.scala:838)
	at org.apache.spark.rdd.RDD$$anonfun$21.apply(RDD.scala:838)
	at org.apache.spark.SparkContext$$anonfun$23.apply(SparkContext.scala:1116)
	at org.apache.spark.SparkContext$$anonfun$23.apply(SparkContext.scala:1116)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111)
	at org.apache.spark.scheduler.Task.run(Task.scala:51)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:187)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	at java.lang.Thread.run(Thread.java:745)




 		 	   		  
Mime
View raw message