spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com>
Subject Re: Join highly skewed datasets
Date Sun, 28 Jun 2015 22:32:02 GMT
I am unable to run my application or sample application with prebuilt spark
1.4 and wit this custom 1.4. In both cases i get this error

15/06/28 15:30:07 WARN ipc.Client: Exception encountered while connecting
to the server : java.lang.IllegalArgumentException: Server has invalid
Kerberos principal: hadoop/rm2@CORP.X.COM


Please let me know what is the correct way to specify JARS with 1.4. The
below command used to work with 1.3.1


*Command*

*./bin/spark-submit -v --master yarn-cluster --driver-class-path
/apache/hadoop/share/hadoop/common/hadoop-common-2.4.1-EBAY-2.jar:/apache/hadoop/lib/hadoop-lzo-0.6.0.jar:/apache/hadoop-2.4.1-2.1.3.0-2-EBAY/share/hadoop/yarn/lib/guava-11.0.2.jar:/apache/hadoop-2.4.1-2.1.3.0-2-EBAY/share/hadoop/hdfs/hadoop-hdfs-2.4.1-EBAY-2.jar
--jars
/apache/hadoop-2.4.1-2.1.3.0-2-EBAY/share/hadoop/hdfs/hadoop-hdfs-2.4.1-EBAY-2.jar,/home/dvasthimal/spark1.4/lib/spark_reporting_dep_only-1.0-SNAPSHOT.jar
 --num-executors 9973 --driver-memory 14g --driver-java-options
"-XX:MaxPermSize=512M -Xmx4096M -Xms4096M -verbose:gc -XX:+PrintGCDetails
-XX:+PrintGCTimeStamps" --executor-memory 14g --executor-cores 1 --queue
hdmi-others --class com.ebay.ep.poc.spark.reporting.SparkApp
/home/dvasthimal/spark1.4/lib/spark_reporting-1.0-SNAPSHOT.jar
startDate=2015-06-20 endDate=2015-06-21
input=/apps/hdmi-prod/b_um/epdatasets/exptsession subcommand=viewItem
output=/user/dvasthimal/epdatasets/viewItem buffersize=128
maxbuffersize=1068 maxResultSize=200G *



On Sun, Jun 28, 2015 at 3:09 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepujain@gmail.com> wrote:

> My code:
>
>     val viEvents = details.filter(_.get(14).asInstanceOf[Long] !=
> NULL_VALUE).map { vi => (vi.get(14).asInstanceOf[Long], vi) } //AVRO
> (150G)
>
>     val lstgItem = DataUtil.getDwLstgItem(sc,
> DateUtil.addDaysToDate(startDate, -89)).filter(_.getItemId().toLong !=
> NULL_VALUE).map { lstg => (lstg.getItemId().toLong, lstg) } // SEQUENCE
> (2TB)
>
>
>     val viEventsWithListings: RDD[(Long, (DetailInputRecord, VISummary,
> Long))] = viEvents.blockJoin(lstgItem, 3, 1, new HashPartitioner(2141)).map
> {
>
> }
>
>
>
> On Sun, Jun 28, 2015 at 3:03 PM, Koert Kuipers <koert@tresata.com> wrote:
>
>> specify numPartitions or partitioner for operations that shuffle.
>>
>> so use:
>> def join[W](other: RDD[(K, W)], numPartitions: Int)
>>
>> or
>> def blockJoin[W](
>>   other: JavaPairRDD[K, W],
>>   leftReplication: Int,
>>   rightReplication: Int,
>>   partitioner: Partitioner)
>>
>> for example:
>> left.blockJoin(right, 3, 1, new HashPartitioner(numPartitions))
>>
>>
>>
>> On Sun, Jun 28, 2015 at 5:57 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepujain@gmail.com>
>> wrote:
>>
>>> You mentioned storage levels must be
>>> (should be memory-and-disk or disk-only), number of partitions (should
>>> be large, multiple of num executors),
>>>
>>> how do i specify that ?
>>>
>>> On Sun, Jun 28, 2015 at 2:35 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepujain@gmail.com>
>>> wrote:
>>>
>>>> I am able to use blockjoin API and it does not throw compilation error
>>>>
>>>> val viEventsWithListings: RDD[(Long, (DetailInputRecord, VISummary,
>>>> Long))] = lstgItem.blockJoin(viEvents,1,1).map {
>>>>
>>>> }
>>>>
>>>> Here viEvents is highly skewed and both are on HDFS.
>>>>
>>>> What should be the optimal values of replication, i gave 1,1
>>>>
>>>>
>>>>
>>>> On Sun, Jun 28, 2015 at 1:47 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepujain@gmail.com>
>>>> wrote:
>>>>
>>>>> I incremented the version of spark from 1.4.0 to 1.4.0.1 and ran
>>>>>
>>>>>  ./make-distribution.sh  --tgz -Phadoop-2.4 -Pyarn  -Phive
>>>>> -Phive-thriftserver
>>>>>
>>>>> Build was successful but the script faild. Is there a way to pass the
>>>>> incremented version ?
>>>>>
>>>>>
>>>>> [INFO] BUILD SUCCESS
>>>>>
>>>>> [INFO]
>>>>> ------------------------------------------------------------------------
>>>>>
>>>>> [INFO] Total time: 09:56 min
>>>>>
>>>>> [INFO] Finished at: 2015-06-28T13:45:29-07:00
>>>>>
>>>>> [INFO] Final Memory: 84M/902M
>>>>>
>>>>> [INFO]
>>>>> ------------------------------------------------------------------------
>>>>>
>>>>> + rm -rf /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/dist
>>>>>
>>>>> + mkdir -p /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/dist/lib
>>>>>
>>>>> + echo 'Spark 1.4.0.1 built for Hadoop 2.4.0'
>>>>>
>>>>> + echo 'Build flags: -Phadoop-2.4' -Pyarn -Phive -Phive-thriftserver
>>>>>
>>>>> + cp
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/assembly/target/scala-2.10/spark-assembly-1.4.0.1-hadoop2.4.0.jar
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/dist/lib/
>>>>>
>>>>> + cp
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/examples/target/scala-2.10/spark-examples-1.4.0.1-hadoop2.4.0.jar
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/dist/lib/
>>>>>
>>>>> + cp
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/network/yarn/target/scala-2.10/spark-1.4.0.1-yarn-shuffle.jar
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/dist/lib/
>>>>>
>>>>> + mkdir -p
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/dist/examples/src/main
>>>>>
>>>>> + cp -r
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/examples/src/main
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/dist/examples/src/
>>>>>
>>>>> + '[' 1 == 1 ']'
>>>>>
>>>>> + cp
>>>>> '/Users/dvasthimal/ebay/projects/ep/spark-1.4.0/lib_managed/jars/datanucleus*.jar'
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/dist/lib/
>>>>>
>>>>> cp:
>>>>> /Users/dvasthimal/ebay/projects/ep/spark-1.4.0/lib_managed/jars/datanucleus*.jar:
>>>>> No such file or directory
>>>>>
>>>>> LM-SJL-00877532:spark-1.4.0 dvasthimal$ ./make-distribution.sh  --tgz
>>>>> -Phadoop-2.4 -Pyarn  -Phive -Phive-thriftserver
>>>>>
>>>>>
>>>>>
>>>>> On Sun, Jun 28, 2015 at 1:41 PM, Koert Kuipers <koert@tresata.com>
>>>>> wrote:
>>>>>
>>>>>> you need 1) to publish to inhouse maven, so your application can
>>>>>> depend on your version, and 2) use the spark distribution you compiled
to
>>>>>> launch your job (assuming you run with yarn so you can launch multiple
>>>>>> versions of spark on same cluster)
>>>>>>
>>>>>> On Sun, Jun 28, 2015 at 4:33 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepujain@gmail.com>
>>>>>> wrote:
>>>>>>
>>>>>>> How can i import this pre-built spark into my application via
maven
>>>>>>> as i want to use the block join API.
>>>>>>>
>>>>>>> On Sun, Jun 28, 2015 at 1:31 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepujain@gmail.com>
>>>>>>> wrote:
>>>>>>>
>>>>>>>> I ran this w/o maven options
>>>>>>>>
>>>>>>>> ./make-distribution.sh  --tgz -Phadoop-2.4 -Pyarn  -Phive
>>>>>>>> -Phive-thriftserver
>>>>>>>>
>>>>>>>> I got this spark-1.4.0-bin-2.4.0.tgz in the same working
directory.
>>>>>>>>
>>>>>>>> I hope this is built with 2.4.x hadoop as i did specify -P
>>>>>>>>
>>>>>>>> On Sun, Jun 28, 2015 at 1:10 PM, ÐΞ€ρ@Ҝ (๏̯͡๏)
<deepujain@gmail.com
>>>>>>>> > wrote:
>>>>>>>>
>>>>>>>>>  ./make-distribution.sh  --tgz --*mvn* "-Phadoop-2.4
-Pyarn
>>>>>>>>> -Dhadoop.version=2.4.0 -Phive -Phive-thriftserver -DskipTests
clean package"
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> or
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>  ./make-distribution.sh  --tgz --*mvn* -Phadoop-2.4 -Pyarn
>>>>>>>>> -Dhadoop.version=2.4.0 -Phive -Phive-thriftserver -DskipTests
clean package"
>>>>>>>>> ​Both fail with
>>>>>>>>>
>>>>>>>>> + echo -e 'Specify the Maven command with the --mvn flag'
>>>>>>>>>
>>>>>>>>> Specify the Maven command with the --mvn flag
>>>>>>>>>
>>>>>>>>> + exit -1
>>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> --
>>>>>>>> Deepak
>>>>>>>>
>>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> --
>>>>>>> Deepak
>>>>>>>
>>>>>>>
>>>>>>
>>>>>
>>>>>
>>>>> --
>>>>> Deepak
>>>>>
>>>>>
>>>>
>>>>
>>>> --
>>>> Deepak
>>>>
>>>>
>>>
>>>
>>> --
>>> Deepak
>>>
>>>
>>
>
>
> --
> Deepak
>
>


-- 
Deepak

Mime
View raw message