Are you writing to an existing hive orc table?

On Wed, Jun 17, 2015 at 3:25 PM, Cheng Lian <lian.cs.zju@gmail.com> wrote:
Thanks for reporting this. Would you mind to help creating a JIRA for this?


On 6/16/15 2:25 AM, patcharee wrote:
I found if I move the partitioned columns in schemaString and in Row to the end of the sequence, then it works correctly...

On 16. juni 2015 11:14, patcharee wrote:
Hi,

I am using spark 1.4 and HiveContext to append data into a partitioned hive table. I found that the data insert into the table is correct, but the partition(folder) created is totally wrong.
Below is my code snippet>>

-------------------------------------------------------------------------------------------------------------------------------------------------------------------
val schemaString = "zone z year month date hh x y height u v w ph phb t p pb qvapor qgraup qnice qnrain tke_pbl el_pbl"
    val schema =
      StructType(
        schemaString.split(" ").map(fieldName =>
          if (fieldName.equals("zone") || fieldName.equals("z") || fieldName.equals("year") || fieldName.equals("month") ||
              fieldName.equals("date") || fieldName.equals("hh") || fieldName.equals("x") || fieldName.equals("y"))
            StructField(fieldName, IntegerType, true)
          else
            StructField(fieldName, FloatType, true)
        ))

val pairVarRDD =
sc.parallelize(Seq((Row(2,42,2009,3,1,0,218,365,9989.497.floatValue(),29.627113.floatValue(),19.071793.floatValue(),0.11982734.floatValue(),3174.6812.floatValue(),
97735.2.floatValue(),16.389032.floatValue(),-96.62891.floatValue(),25135.365.floatValue(),2.6476808E-5.floatValue(),0.0.floatValue(),13195.351.floatValue(),
        0.0.floatValue(),0.1.floatValue(),0.0.floatValue()))
    ))

val partitionedTestDF2 = sqlContext.createDataFrame(pairVarRDD, schema)

partitionedTestDF2.write.format("org.apache.spark.sql.hive.orc.DefaultSource")
.mode(org.apache.spark.sql.SaveMode.Append).partitionBy("zone","z","year","month").saveAsTable("test4DimBySpark")

-------------------------------------------------------------------------------------------------------------------------------------------------------------------

The table contains 23 columns (longer than Tuple maximum length), so I use Row Object to store raw data, not Tuple.
Here is some message from spark when it saved data>>

15/06/16 10:39:22 INFO metadata.Hive: Renaming src:hdfs://service-10-0.local:8020/tmp/hive-patcharee/hive_2015-06-16_10-39-21_205_8768669104487548472-1/-ext-10000/zone=13195/z=0/year=0/month=0/part-00001;dest: hdfs://service-10-0.local:8020/apps/hive/warehouse/test4dimBySpark/zone=13195/z=0/year=0/month=0/part-00001;Status:true
15/06/16 10:39:22 INFO metadata.Hive: New loading path = hdfs://service-10-0.local:8020/tmp/hive-patcharee/hive_2015-06-16_10-39-21_205_8768669104487548472-1/-ext-10000/zone=13195/z=0/year=0/month=0 with partSpec {zone=13195, z=0, year=0, month=0}

>From the raw data (pairVarRDD) zone = 2, z = 42, year = 2009, month = 3. But spark created a partition {zone=13195, z=0, year=0, month=0}.

When I queried from hive>>

hive> select * from test4dimBySpark;
OK
2    42    2009    3    1.0    0.0    218.0    365.0    9989.497 29.627113    19.071793    0.11982734    -3174.6812    97735.2 16.389032    -96.62891    25135.365    2.6476808E-5    0.0 13195    0    0    0
hive> select zone, z, year, month from test4dimBySpark;
OK
13195    0    0    0
hive> dfs -ls /apps/hive/warehouse/test4dimBySpark/*/*/*/*;
Found 2 items
-rw-r--r--   3 patcharee hdfs       1411 2015-06-16 10:39 /apps/hive/warehouse/test4dimBySpark/zone=13195/z=0/year=0/month=0/part-00001

The data stored in the table is correct zone = 2, z = 42, year = 2009, month = 3, but the partition created was wrong "zone=13195/z=0/year=0/month=0"

Is this a bug or what could be wrong? Any suggestion is appreciated.

BR,
Patcharee







---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscribe@spark.apache.org
For additional commands, e-mail: user-help@spark.apache.org



---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscribe@spark.apache.org
For additional commands, e-mail: user-help@spark.apache.org




---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscribe@spark.apache.org
For additional commands, e-mail: user-help@spark.apache.org