spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Sadaf <sa...@platalytics.com>
Subject Spark Streaming
Date Wed, 29 Jul 2015 08:54:58 GMT
Hi,

I am new to Spark Streaming and writing a code for twitter connector. 
I am facing the following exception.

ERROR StreamingContext: Error starting the context, marking it as stopped
org.apache.spark.SparkException:
org.apache.spark.streaming.dstream.WindowedDStream@532d0784 has not been
initialized
	at
org.apache.spark.streaming.dstream.DStream.isTimeValid(DStream.scala:321)
	at
org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:342)
	at
org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:342)
	at scala.Option.orElse(Option.scala:257)
	at
org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:339)
	at
org.apache.spark.streaming.dstream.ForEachDStream.generateJob(ForEachDStream.scala:38)
	at
org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:120)
	at
org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:120)
	at
scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
	at
scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
	at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
	at
scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
	at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
	at
org.apache.spark.streaming.DStreamGraph.generateJobs(DStreamGraph.scala:120)
	at
org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$restart$4.apply(JobGenerator.scala:227)
	at
org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$restart$4.apply(JobGenerator.scala:222)
	at
scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
	at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
	at
org.apache.spark.streaming.scheduler.JobGenerator.restart(JobGenerator.scala:222)
	at
org.apache.spark.streaming.scheduler.JobGenerator.start(JobGenerator.scala:92)
	at
org.apache.spark.streaming.scheduler.JobScheduler.start(JobScheduler.scala:73)
	at
org.apache.spark.streaming.StreamingContext.liftedTree1$1(StreamingContext.scala:588)
	at
org.apache.spark.streaming.StreamingContext.start(StreamingContext.scala:586)
	at twitter.streamingSpark$.twitterConnector(App.scala:38)
	at twitter.streamingSpark$.main(App.scala:26)
	at twitter.streamingSpark.main(App.scala)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
	at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:606)
	at
org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:664)
	at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:169)
	at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:192)
	at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:111)
	at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)


the relavent code is 

 def twitterConnector() :Unit =
  {
         val atwitter=managingCredentials()
      
       val
ssc=StreamingContext.getOrCreate("hdfs://192.168.23.109:9000/home/cloud9/twitterCheckpointDir",()=>
{ managingContext() })
       fetchTweets(ssc, atwitter )
      
       ssc.start()             // Start the computation
       ssc.awaitTermination()
    
  }

def managingContext():StreamingContext =
  {
       //making spark context
       val conf = new
SparkConf().setMaster("local[*]").setAppName("twitterConnector")
       val ssc = new StreamingContext(conf, Seconds(1))
       val sqlContext = new
org.apache.spark.sql.SQLContext(ssc.sparkContext)
       import sqlContext.implicits._ 
       
       //checkpointing  
      
ssc.checkpoint("hdfs://192.168.23.109:9000/home/cloud9/twitterCheckpointDir")
       ssc
  }
   def fetchTweets (ssc : StreamingContext , atwitter :
Option[twitter4j.auth.Authorization]) : Unit = {
 

       val tweets
=TwitterUtils.createStream(ssc,atwitter,Nil,StorageLevel.MEMORY_AND_DISK_2)
       val twt = tweets.window(Seconds(10),Seconds(10))
      //checkpoint duration
      /twt.checkpoint(new Duration(1000))
       
       //processing
       case class Tweet(createdAt:Long, text:String)
       twt.map(status=> 
       Tweet(status.getCreatedAt().getTime()/1000, status.getText())
       )
       twt.print()
  }
Can anyone help me in this regards?



--
View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/Spark-Streaming-tp24058.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscribe@spark.apache.org
For additional commands, e-mail: user-help@spark.apache.org


Mime
View raw message