spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Sabarish Sasidharan <>
Subject Re: question about combining small parquet files
Date Tue, 01 Dec 2015 06:32:04 GMT
You could use the number of input files to determine the number of output
partitions. This assumes your input file sizes are deterministic.

Else, you could also persist the RDD and then determine it's size using the

On 26-Nov-2015 11:13 pm, "Nezih Yigitbasi" <>

> Hi Spark people,
> I have a Hive table that has a lot of small parquet files and I am
> creating a data frame out of it to do some processing, but since I have a
> large number of splits/files my job creates a lot of tasks, which I don't
> want. Basically what I want is the same functionality that Hive provides,
> that is, to combine these small input splits into larger ones by specifying
> a max split size setting. Is this currently possible with Spark?
> I look at coalesce() but with coalesce I can only control the number
> of output files not their sizes. And since the total input dataset size
> can vary significantly in my case, I cannot just use a fixed partition
> count as the size of each output file can get very large. I then looked for
> getting the total input size from an rdd to come up with some heuristic to
> set the partition count, but I couldn't find any ways to do it (without
> modifying the spark source).
> Any help is appreciated.
> Thanks,
> Nezih
> PS: this email is the same as my previous email as I learned that my
> previous email ended up as spam for many people since I sent it through
> nabble, sorry for the double post.

View raw message