spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From AlexModestov <AleksandrModes...@gmail.com>
Subject error "Py4JJavaError: An error occurred while calling z:org.apache.spark.sql.execution.EvaluatePython.takeAndServe."
Date Wed, 13 Apr 2016 21:27:30 GMT
I get this error.
Who knows what does it mean?

Py4JJavaError: An error occurred while calling
z:org.apache.spark.sql.execution.EvaluatePython.takeAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure:
Exception while getting task result:
org.apache.spark.storage.BlockFetchException: Failed to fetch block from 1
locations. Most recent failure cause:
	at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
	at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
	at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
	at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
	at
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
	at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
	at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
	at scala.Option.foreach(Option.scala:236)
	at
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
	at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
	at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
	at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1952)
	at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1025)
	at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
	at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
	at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
	at org.apache.spark.rdd.RDD.reduce(RDD.scala:1007)
	at org.apache.spark.rdd.RDD$$anonfun$takeOrdered$1.apply(RDD.scala:1397)
	at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
	at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
	at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
	at org.apache.spark.rdd.RDD.takeOrdered(RDD.scala:1384)
	at
org.apache.spark.sql.execution.TakeOrderedAndProject.collectData(basicOperators.scala:213)
	at
org.apache.spark.sql.execution.TakeOrderedAndProject.doExecute(basicOperators.scala:223)
	at
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
	at
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
	at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
	at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
	at
org.apache.spark.sql.execution.Union$$anonfun$doExecute$1.apply(basicOperators.scala:144)
	at
org.apache.spark.sql.execution.Union$$anonfun$doExecute$1.apply(basicOperators.scala:144)
	at
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
	at
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
	at scala.collection.immutable.List.foreach(List.scala:318)
	at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
	at scala.collection.AbstractTraversable.map(Traversable.scala:105)
	at org.apache.spark.sql.execution.Union.doExecute(basicOperators.scala:144)
	at
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
	at
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
	at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
	at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
	at
org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:187)
	at
org.apache.spark.sql.execution.EvaluatePython$$anonfun$takeAndServe$1.apply$mcI$sp(python.scala:126)
	at
org.apache.spark.sql.execution.EvaluatePython$$anonfun$takeAndServe$1.apply(python.scala:124)
	at
org.apache.spark.sql.execution.EvaluatePython$$anonfun$takeAndServe$1.apply(python.scala:124)
	at
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
	at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086)
	at
org.apache.spark.sql.execution.EvaluatePython$.takeAndServe(python.scala:124)
	at org.apache.spark.sql.execution.EvaluatePython.takeAndServe(python.scala)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
	at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:606)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
	at py4j.Gateway.invoke(Gateway.java:259)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.GatewayConnection.run(GatewayConnection.java:209)
	at java.lang.Thread.run(Thread.java:745)



--
View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/error-Py4JJavaError-An-error-occurred-while-calling-z-org-apache-spark-sql-execution-EvaluatePython--tp26779.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscribe@spark.apache.org
For additional commands, e-mail: user-help@spark.apache.org


Mime
View raw message