spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From unk1102 <umesh.ka...@gmail.com>
Subject How to change Spark DataFrame groupby("col1",..,"coln") into reduceByKey()?
Date Sun, 22 May 2016 10:34:02 GMT
Hi I have Spark job which does group by and I cant avoid it because of my use
case. I have large dataset around 1 TB which I need to process/update in
DataFrame. Now my jobs shuffles huge data and slows things because of
shuffling and groupby. One reason I see is my data is skew some of my group
by keys are empty. How do I avoid empty group by keys in DataFrame? Does
DataFrame avoid empty group by key? I have around 8 keys on which I do group
by. 

sourceFrame.select("blabla").groupby("col1","col2","col3",..."col8").agg("bla
bla");

How do I change above code into using reduceByKey() can we apply aggregation
on reduceByKey()? Please guide. Thanks in advance.



--
View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/How-to-change-Spark-DataFrame-groupby-col1-coln-into-reduceByKey-tp26998.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscribe@spark.apache.org
For additional commands, e-mail: user-help@spark.apache.org


Mime
View raw message