spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Richard Garris <rlgar...@databricks.com>
Subject Re: LDA and Maximum Iterations
Date Wed, 19 Oct 2016 14:46:31 GMT
Hi Frank,

Two suggestions

1. I would recommend caching the corpus prior to running LDA

2. If you are using EM I would tweak the sample size using the
setMiniBatchFraction
parameter to decrease the sample per iteration.

-Richard

On Tue, Sep 20, 2016 at 10:27 AM, Frank Zhang <
dataminingus@yahoo.com.invalid> wrote:

> Hi Yuhao,
>
>    Thank you so much for your great contribution to the LDA and other
> Spark modules!
>
>     I use both Spark 1.6.2 and 2.0.0. The data I used originally is very
> large which has tens of millions of documents. But for test purpose, the
> data set I mentioned earlier ("/data/mllib/sample_lda_data.txt") is good
> enough.  Please change the path to where you install your Spark to point to
> the data set and run those lines:
>
> import org.apache.spark.mllib.clustering.LDA
> import org.apache.spark.mllib.linalg.Vectors
>
> *//please change the path for the data set below:*
> *val data = sc.textFile("/data/mllib/sample_lda_data.txt") *
> val parsedData = data.map(s => Vectors.dense(s.trim.split('
> ').map(_.toDouble)))
> val corpus = parsedData.zipWithIndex.map(_.swap).cache()
> val ldaModel = new LDA().setK(3).run(corpus)
>
>    It should work. After that, please run:
> val ldaModel = new LDA().setK(3).setMaxIterations(500).run(corpus)
>
>    When I ran it, at job #90, that iteration took relatively extremely
> long then it stopped with exception:
> Active Jobs (1)
> Job IdDescriptionSubmittedDurationStages: Succeeded/TotalTasks (for all
> stages): Succeeded/Total
> 90 fold at LDAOptimizer.scala:226
> <http://10.252.12.37:4040/jobs/job?id=90> 2016/09/20 10:18:30 22 s 0/269
> 0/538
> Completed Jobs (90)
> Job IdDescriptionSubmittedDurationStages: Succeeded/TotalTasks (for all
> stages): Succeeded/Total
> 89 fold at LDAOptimizer.scala:226
> <http://10.252.12.37:4040/jobs/job?id=89> 2016/09/20 10:18:30 43 ms 4/4
> (262 skipped)
> 8/8 (524 skipped)
> 88 fold at LDAOptimizer.scala:226
> <http://10.252.12.37:4040/jobs/job?id=88> 2016/09/20 10:18:30 40 ms 4/4
> (259 skipped)
> 8/8 (518 skipped)
> 87 fold at LDAOptimizer.scala:226
> <http://10.252.12.37:4040/jobs/job?id=87> 2016/09/20 10:18:29 80 ms 4/4
> (256 skipped)
> 8/8 (512 skipped)
> 86 fold at LDAOptimizer.scala:226
> <http://10.252.12.37:4040/jobs/job?id=86> 2016/09/20 10:18:29 41 ms 4/4
> (253 skipped)
> 8/8 (506 skipped)
>    Part of the error message:
> Driver stacktrace:
>   at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$
> scheduler$DAGScheduler$$failJobAndIndependentStages(
> DAGScheduler.scala:1450)
>   at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(
> DAGScheduler.scala:1438)
>   at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(
> DAGScheduler.scala:1437)
>   at scala.collection.mutable.ResizableArray$class.foreach(
> ResizableArray.scala:59)
>   at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>   at org.apache.spark.scheduler.DAGScheduler.abortStage(
> DAGScheduler.scala:1437)
>   at org.apache.spark.scheduler.DAGScheduler$$anonfun$
> handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
>   at org.apache.spark.scheduler.DAGScheduler$$anonfun$
> handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
>   at scala.Option.foreach(Option.scala:257)
>   at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(
> DAGScheduler.scala:811)
>   at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.
> doOnReceive(DAGScheduler.scala:1659)
>   at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.
> onReceive(DAGScheduler.scala:1618)
>   at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.
> onReceive(DAGScheduler.scala:1607)
>   at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>   at org.apache.spark.scheduler.DAGScheduler.runJob(
> DAGScheduler.scala:632)
>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:1871)
>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:1934)
>   at org.apache.spark.rdd.RDD$$anonfun$fold$1.apply(RDD.scala:1046)
>   at org.apache.spark.rdd.RDDOperationScope$.withScope(
> RDDOperationScope.scala:151)
>   at org.apache.spark.rdd.RDDOperationScope$.withScope(
> RDDOperationScope.scala:112)
>   at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
>   at org.apache.spark.rdd.RDD.fold(RDD.scala:1040)
>   at org.apache.spark.mllib.clustering.EMLDAOptimizer.
> computeGlobalTopicTotals(LDAOptimizer.scala:226)
>   at org.apache.spark.mllib.clustering.EMLDAOptimizer.
> next(LDAOptimizer.scala:213)
>   at org.apache.spark.mllib.clustering.EMLDAOptimizer.
> next(LDAOptimizer.scala:79)
>   at org.apache.spark.mllib.clustering.LDA.run(LDA.scala:334)
>   ... 48 elided
> Caused by: java.lang.StackOverflowError
>   at java.lang.reflect.InvocationTargetException.<init>(
> InvocationTargetException.java:72)
>   at sun.reflect.GeneratedMethodAccessor9.invoke(Unknown Source)
>   at sun.reflect.DelegatingMethodAccessorImpl.invoke(
> DelegatingMethodAccessorImpl.java:43)
>   at java.lang.reflect.Method.invoke(Method.java:498)
>   at java.io.ObjectStreamClass.invokeReadObject(
> ObjectStreamClass.java:1058)
>
>    Thank you so much!
>
>    Frank
>
>
>
> ------------------------------
> *From:* "Yang, Yuhao" <yuhao.yang@intel.com>
> *To:* Frank Zhang <dataminingus@yahoo.com>; "user@spark.apache.org" <
> user@spark.apache.org>
> *Sent:* Tuesday, September 20, 2016 9:49 AM
> *Subject:* RE: LDA and Maximum Iterations
>
> Hi Frank,
>
> Which version of Spark are you using? Also can you share more information
> about the exception.
>
> If it’s not confidential, you can send the data sample to me (
> yuhao.yang@intel.com) and I can try to investigate.
>
> Regards,
> Yuhao
>
> *From:* Frank Zhang [mailto:dataminingus@yahoo.com.INVALID]
> *Sent:* Monday, September 19, 2016 9:20 PM
> *To:* user@spark.apache.org
> *Subject:* LDA and Maximum Iterations
>
> Hi all,
>
>    I have a question about parameter setting for LDA model. When I tried
> to set a large number like 500 for
> setMaxIterations, the program always fails.  There is a very
> straightforward LDA tutorial using an example data set in the mllib package:
> http://stackoverflow.com/questions/36631991/latent-
> dirichlet-allocation-lda-algorithm-not-printing-results-in-spark-scala.
>  The codes are here:
>
> import org.apache.spark.mllib.clustering.LDA
> import org.apache.spark.mllib.linalg.Vectors
> // Load and parse the data
> val data = sc.textFile("/data/mllib/sample_lda_data.txt") // you might
> need to change the path for the data set
> val parsedData = data.map(s => Vectors.dense(s.trim.split('
> ').map(_.toDouble)))
> // Index documents with unique IDs
> val corpus = parsedData.zipWithIndex.map(_.swap).cache()
> // Cluster the documents into three topics using LDA
> val ldaModel = new LDA().setK(3).run(corpus)
>
> But if I change the last line to
> val ldaModel = new LDA().setK(3).setMaxIterations(500).run(corpus), the
> program fails.
>
>     I greatly appreciate your help!
>
> Best,
>
>     Frank
>
>
>
>
>
>


-- 

Richard L Garris

Solution Architect

Databricks, Inc.

richard@databricks.com

Mobile: 650.200.0840

databricks.com
<http://databricks.com/>

Mime
View raw message