spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Alex <siri8...@gmail.com>
Subject Re: Hive Java UDF running on spark-sql issue
Date Wed, 01 Feb 2017 11:44:26 GMT
Yes...

Its taking values form a record which is a json and converting it into
multiple columns after typecasting...

On Wed, Feb 1, 2017 at 4:07 PM, Marco Mistroni <mmistroni@gmail.com> wrote:

> Hi
>  What is the UDF supposed to do? Are you trying to write a generic
> function to convert values to another type depending on what is the type of
> the original value?
> Kr
>
>
>
> On 1 Feb 2017 5:56 am, "Alex" <siri8123@gmail.com> wrote:
>
> Hi ,
>
>
> we have Java Hive UDFS which are working perfectly fine in Hive
>
> SO for Better performance we are migrating the same To Spark-sql
>
> SO these jar files we are giving --jars argument to spark-sql
> and defining temporary functions to make it to run on spark-sql
>
> there is this particular Java UDF which is working fine on hive But when
> ran on spark-sql it is giving the error
>
> Caused by:org.apache.hadoop.hive.ql.metadata.HiveException:
> java.lang.ClassCastException: java.lang.Long cannot be cast to
> org.apache.hadoop.io.LongWritable
> org.apache.hadoop.hive.ql.metadata.HiveException:
> java.lang.ClassCastException: java.lang.String cannot be cast to
> org.apache.hadoop.io.Text
> Caused by:org.apache.hadoop.hive.ql.metadata.HiveException:
> java.lang.ClassCastException: java.lang.Double cannot be cast to
> org.apache.hadoop.hive.serde2.io.DoubleWritable
>
> The piece of code where it is throwing the error is in teh switch case
> below
>
> public String getName(int pos) {
> if (pos < 0 && pos >= colnames.size())
> return null;
> return ((StructField) colnames.get(pos)).getFieldName();
> }
>
> public int getPos(String name) {
> // System.out.println(name+transactionObject.toString());
> Integer pos = (Integer) transactionObject.get(name.toLowerCase());
> if (pos == null)
> return -1;
> return pos;
> }
>
> public Object get(Object name) {
> int pos = getPos((String) name);
> if (pos < 0)
> return null;
> String f = "string";
> Object obj = list.get(pos);
> if (obj == null)
> return null;
> ObjectInspector ins = ((StructField) colnames.get(pos)).getFieldObj
> ectInspector();
> if (ins != null)
> f = ins.getTypeName();
> switch (f) {
> case "double":
> return ((DoubleWritable) obj).get();
> case "bigint":
> return ((Long) obj).get();
> case "string":
> return ((Text) obj).toString();
> default:
> return obj;
> }
> }
>
> So I made the code change to below
>
> public int getPos(String name) {
> // System.out.println(name+transactionObject.toString());
> Integer pos = (Integer) transactionObject.get(name.toLowerCase());
> if (pos == null)
> return -1;
> return pos;
> }
>
> public Object get(Object name) {
> int pos = getPos((String) name);
> if (pos < 0)
> return null;
> String f = "string";
> Object obj = list.get(pos);
> Object result = null;
> if (obj == null)
> return null;
> ObjectInspector ins = ((StructField) colnames.get(pos)).getFieldObj
> ectInspector();
> if (ins != null)
> f = ins.getTypeName();
>
> PrimitiveObjectInspector ins2 = (PrimitiveObjectInspector) ins;
> switch (ins2.getPrimitiveCategory()) {
> case DOUBLE:
>
> Double res = (Double)(((DoubleObjectInspector) ins2).get(obj));
>
> result = (double) res;
> System.out.println("printlog when double"+result);
> return result;
>
>
> case LONG:
>
> Long res1 = (Long)(((LongObjectInspector) ins2).get(obj));
> result = (long) res1;
> System.out.println("printlog when long"+result);
> return result;
>
>
> case STRING:
> result = (((StringObjectInspector) ins2).getPrimitiveJavaObject(o
> bj)).toString();
> System.out.println("printlog when String"+result);
> return result;
>
> default:
> result = obj;
> return result;
> }
>
> }
> After making This Changes .. The java hive udf started working fine on
> Spark-sql
>
> But it is giving different results when the UDF is used in the query..
>
> If you think You can give it a shot solving this issue please reach me out
> on hangouts or reply here
>
>
>
>
>

Mime
View raw message