spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Gevorg Hari <>
Subject Spark MLlib: Should I call .cache before fitting a model?
Date Tue, 27 Feb 2018 19:24:47 GMT
Imagine that I am training a Spark MLlib model as follows:

val traingData = loadTrainingData(...)val logisticRegression = new

traingData.cacheval logisticRegressionModel =

Does the call traingData.cache improve performances at training time or is
it not needed?

Does the .fit(...) method for a ML algorithm call cache/unpersist

View raw message