Hi all,
we have a dataframe with 1000 partitions and we need to write the
dataframe into a MySQL using this command:
df.coalesce(20)
df.write.jdbc(url=url,
table=table,
mode=mode,
properties=properties)
and we get this errors randomly
java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE
at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:869)
at
org.apache.spark.storage.DiskStore$$anonfun$getBytes$4.apply(DiskStore.scala:125)
at
org.apache.spark.storage.DiskStore$$anonfun$getBytes$4.apply(DiskStore.scala:124)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1337)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:126)
at
org.apache.spark.storage.BlockManager.getLocalValues(BlockManager.scala:520)
at org.apache.spark.storage.BlockManager.get(BlockManager.scala:693)
at
org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:753)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org
$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1690)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1678)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1677)
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1677)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:855)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:855)
at scala.Option.foreach(Option.scala:257)
at
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:855)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1905)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1860)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1849)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:671)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062)
at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:446)
at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.IllegalArgumentException: Size exceeds
Integer.MAX_VALUE
at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:869)
at
org.apache.spark.storage.DiskStore$$anonfun$getBytes$4.apply(DiskStore.scala:125)
at
org.apache.spark.storage.DiskStore$$anonfun$getBytes$4.apply(DiskStore.scala:124)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1337)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:126)
at
org.apache.spark.storage.BlockManager.getLocalValues(BlockManager.scala:520)
at org.apache.spark.storage.BlockManager.get(BlockManager.scala:693)
at
org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:753)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
According to JDBC connector *numPartitions* determines the maximum write
parallelism, we use coalesce instead to set partitions to 20 to avoid
generating too much load on MySQL and it seems that the issue is due to the
fact that Spark is repartitioning from 1000 to 20 before writing.
If the issue is due to this configuration which is the best practice to
write a dataframe with lots of partitions into our database limiting the
concurrent connections?
Thanks
Davide B.
----------------------------------------------------------------------------------------
Davide Brambilla
ContentWise R&D
ContentWise
davide.brambilla@contentwise.tv
phone: +39 02 49517001 mobile: 345 71 13 800
ContentWise SrL - Via Schiaffino, 11 - 20158 Milano (MI) – ITALY
|