spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Mikhail Pryakhin <m.prya...@gmail.com>
Subject Stream is corrupted in ShuffleBlockFetcherIterator
Date Thu, 15 Aug 2019 20:47:34 GMT
Hello, Spark community!

I've been struggling with my job which constantly fails due to inability to uncompress some
previously compressed blocks while shuffling data. 
I use spark 2.2.0 with all the configuration settings left by default (no specific compression
codec is specified). I've ascertained that LZ4CompressionCodec is used as a default codec.
The job fails as soon as the limit of attempts exceeded with the following  message:

Caused by: java.io.IOException: Stream is corrupted
	at org.apache.spark.io.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:211)
	at org.apache.spark.io.LZ4BlockInputStream.read(LZ4BlockInputStream.java:125)
	at org.apache.spark.io.LZ4BlockInputStream.read(LZ4BlockInputStream.java:137)
	at org.apache.spark.util.Utils$$anonfun$copyStream$1.apply$mcJ$sp(Utils.scala:340)
	at org.apache.spark.util.Utils$$anonfun$copyStream$1.apply(Utils.scala:327)
	at org.apache.spark.util.Utils$$anonfun$copyStream$1.apply(Utils.scala:327)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1337)
	at org.apache.spark.util.Utils$.copyStream(Utils.scala:348)
	at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:395)
	... 28 more
Caused by: net.jpountz.lz4.LZ4Exception: Error decoding offset 14649 of input buffer


Actually, I've stumbled upon a bug [1] as a not fixed yet. Any clue on how to workaround this
issue?  I've tried the Snappy codec but it fails likewise with a bit different message)

org.apache.spark.shuffle.FetchFailedException: failed to uncompress the chunk: FAILED_TO_UNCOMPRESS(5)
	at org.apache.spark.storage.ShuffleBlockFetcherIterator.throwFetchFailedException(ShuffleBlockFetcherIterator.scala:442)
	at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:403)
	at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:59)
	at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
	at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
	at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
	at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
	at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithKeys$(Unknown
Source)
	at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
Source)
	at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
	at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
	at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
	at scala.collection.Iterator$JoinIterator.hasNext(Iterator.scala:211)
	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
	at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithKeys$(Unknown
Source)
	at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
Source)
	at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
	at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
	at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
	at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
	at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
	at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
	at org.apache.spark.scheduler.Task.run(Task.scala:108)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.IOException: failed to uncompress the chunk: FAILED_TO_UNCOMPRESS(5)
	at org.xerial.snappy.SnappyInputStream.hasNextChunk(SnappyInputStream.java:361)
	at org.xerial.snappy.SnappyInputStream.rawRead(SnappyInputStream.java:158)
	at org.xerial.snappy.SnappyInputStream.read(SnappyInputStream.java:142)
	at java.io.InputStream.read(InputStream.java:101)
	at org.apache.spark.util.Utils$$anonfun$copyStream$1.apply$mcJ$sp(Utils.scala:340)
	at org.apache.spark.util.Utils$$anonfun$copyStream$1.apply(Utils.scala:327)
	at org.apache.spark.util.Utils$$anonfun$copyStream$1.apply(Utils.scala:327)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1337)
	at org.apache.spark.util.Utils$.copyStream(Utils.scala:348)
	at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:395)
	... 27 more


The option of using no compression seems the only feasible for me at this point. 
I really need your expert assistance, thank you very much in advance! Any help is greatly
appreciated!


[1] https://issues.apache.org/jira/browse/SPARK-18105


Cheers,
Mike Pryakhin


Mime
View raw message