spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Takuya UESHIN <ues...@happy-camper.st>
Subject Re: [DISCUSS] Remove sorting of fields in PySpark SQL Row construction
Date Fri, 08 Nov 2019 03:01:07 GMT
+1

On Thu, Nov 7, 2019 at 6:54 PM Shane Knapp <sknapp@berkeley.edu> wrote:

> +1
>
> On Thu, Nov 7, 2019 at 6:08 PM Hyukjin Kwon <gurwls223@gmail.com> wrote:
> >
> > +1
> >
> > 2019년 11월 6일 (수) 오후 11:38, Wenchen Fan <cloud0fan@gmail.com>님이
작성:
> >>
> >> Sounds reasonable to me. We should make the behavior consistent within
> Spark.
> >>
> >> On Tue, Nov 5, 2019 at 6:29 AM Bryan Cutler <cutlerb@gmail.com> wrote:
> >>>
> >>> Currently, when a PySpark Row is created with keyword arguments, the
> fields are sorted alphabetically. This has created a lot of confusion with
> users because it is not obvious (although it is stated in the pydocs) that
> they will be sorted alphabetically. Then later when applying a schema and
> the field order does not match, an error will occur. Here is a list of some
> of the JIRAs that I have been tracking all related to this issue:
> SPARK-24915, SPARK-22232, SPARK-27939, SPARK-27712, and relevant discussion
> of the issue [1].
> >>>
> >>> The original reason for sorting fields is because kwargs in python <
> 3.6 are not guaranteed to be in the same order that they were entered [2].
> Sorting alphabetically ensures a consistent order. Matters are further
> complicated with the flag _from_dict_ that allows the Row fields to to be
> referenced by name when made by kwargs, but this flag is not serialized
> with the Row and leads to inconsistent behavior. For instance:
> >>>
> >>> >>> spark.createDataFrame([Row(A="1", B="2")], "B string, A
> string").first()
> >>> Row(B='2', A='1')
> >>> >>> spark.createDataFrame(spark.sparkContext.parallelize([Row(A="1",
> B="2")]), "B string, A string").first()
> >>> Row(B='1', A='2')
> >>>
> >>> I think the best way to fix this is to remove the sorting of fields
> when constructing a Row. For users with Python 3.6+, nothing would change
> because these versions of Python ensure that the kwargs stays in the
> ordered entered. For users with Python < 3.6, using kwargs would check a
> conf to either raise an error or fallback to a LegacyRow that sorts the
> fields as before. With Python < 3.6 being deprecated now, this LegacyRow
> can also be removed at the same time. There are also other ways to create
> Rows that will not be affected. I have opened a JIRA [3] to capture this,
> but I am wondering what others think about fixing this for Spark 3.0?
> >>>
> >>> [1] https://github.com/apache/spark/pull/20280
> >>> [2] https://www.python.org/dev/peps/pep-0468/
> >>> [3] https://issues.apache.org/jira/browse/SPARK-29748
>
>
>
> --
> Shane Knapp
> UC Berkeley EECS Research / RISELab Staff Technical Lead
> https://rise.cs.berkeley.edu
>
> ---------------------------------------------------------------------
> To unsubscribe e-mail: user-unsubscribe@spark.apache.org
>
>

-- 
Takuya UESHIN
Tokyo, Japan

http://twitter.com/ueshin

Mime
View raw message