systemml-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Mingyang Wang <>
Subject [HELP] Undesired Benchmark Results
Date Fri, 24 Mar 2017 03:41:36 GMT
Hi Everyone,

I got some some undesired results when running some benchmarks with
SystemML, and I really hope to get some helps from you guys.

Say, I want to read a large matrix in csv and retrieve the first cell with

# simple_read.dml
data = read($RS)
print("One Cell data[1,1]: " + toString(data[1,1]))

and run it with the configuration such as

spark-submit \
    --driver-memory 20G \
    --executor-memory 100G \
    --executor-cores 20 \
    --num-executors 1 \
    --conf spark.driver.maxResultSize=0 \
    --conf spark.rpc.message.maxSize=128 \
    $SYSTEMML_HOME/target/SystemML.jar \
    -f simple_read.dml \
    -stats \
    -explain \

When the input matrix is 2x10^7 by 103 (around 20GB), things worked fine,
as sp_rangeReIndex took 19.725s and sp_csvrblk took 11.330s. But when the
input matrix is reduced to 10^7 by 103 (around 10GB), interesting things
happened, as rangeReIndex took 92.024s and sp_csvrblk took 7.774s.

These results were obtained with SystemML v0.13.0 on Spark 2.1.0 in
standalone mode with 128GB memory and 24 cores.

>From the log, it seems that for the latter case, the control program in the
driver took the main job and led to lots of disk I/O, thus the whole
program had been slowed down.

I understand that assigning the control program some tasks is a key
component in SystemML. But this feature really brings in some chaos to the
benchmarks in my case. Any suggestion about how to choose a better
configuration or make some detours so I can obtain fair benchmarks on a
wide range of data dimensions?

If needed, I can attach the logs.

I really appreciate your help!

Mingyang Wang
Graduate Student in UCSD CSE Dept.

  • Unnamed multipart/alternative (inline, None, 0 bytes)
View raw message