tika-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "ASF GitHub Bot (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (TIKA-2016) A parser that combines Apache OpenNLP and Apache Tika and provides facilities for automatically deriving sentiment from text.
Date Tue, 02 May 2017 20:09:04 GMT

    [ https://issues.apache.org/jira/browse/TIKA-2016?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15993633#comment-15993633
] 

ASF GitHub Bot commented on TIKA-2016:
--------------------------------------

chrismattmann commented on issue #169: TIKA-2016  Sentiment Analysis Parser Contributed by
amensiko and thammegowda
URL: https://github.com/apache/tika/pull/169#issuecomment-298746406
 
 
   thanks @thammegowda for testing with the categorical model too. Seems easy enough. I will
test tonight thanks
 
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
users@infra.apache.org


> A parser that combines Apache OpenNLP and Apache Tika and provides facilities for automatically
deriving sentiment from text.
> -----------------------------------------------------------------------------------------------------------------------------
>
>                 Key: TIKA-2016
>                 URL: https://issues.apache.org/jira/browse/TIKA-2016
>             Project: Tika
>          Issue Type: New Feature
>          Components: parser
>            Reporter: Anastasija Mensikova
>            Assignee: Chris A. Mattmann
>              Labels: analysis, gsoc2016, memex, parser, sentiment
>             Fix For: 1.15
>
>
> A new project that implements a parser that uses Apache OpenNLP and Apache Tika to perform
Sentiment Analysis.



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

Mime
View raw message