tika-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "ASF GitHub Bot (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (TIKA-2322) Video labeling using existing ObjectRecognition
Date Mon, 01 May 2017 15:04:04 GMT

    [ https://issues.apache.org/jira/browse/TIKA-2322?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15990924#comment-15990924
] 

ASF GitHub Bot commented on TIKA-2322:
--------------------------------------

ThejanW commented on a change in pull request #175: TIKA-2322: update dockerfile
URL: https://github.com/apache/tika/pull/175#discussion_r114136424
 
 

 ##########
 File path: tika-parsers/src/main/resources/org/apache/tika/parser/recognition/tf/InceptionVideoRestDockerfile
 ##########
 @@ -60,7 +57,7 @@ RUN cmake -D CMAKE_BUILD_TYPE=RELEASE \
       -D INSTALL_C_EXAMPLES=OFF \
       -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-3.2.0/modules \
       -D BUILD_EXAMPLES=ON ..
-RUN make -j4 
+RUN make -j8
 
 Review comment:
   Hmm...then my guess was right. then keep it as j4
 
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
users@infra.apache.org


> Video labeling using existing ObjectRecognition
> -----------------------------------------------
>
>                 Key: TIKA-2322
>                 URL: https://issues.apache.org/jira/browse/TIKA-2322
>             Project: Tika
>          Issue Type: Improvement
>          Components: parser
>            Reporter: Madhav Sharan
>            Assignee: Chris A. Mattmann
>              Labels: memex
>             Fix For: 1.15
>
>
> Currently TIKA supports ObjectRecognition in Images. I am proposing to extend this to
support videos. 
> Idea is -
> 1. Extract frames from video and run IncV3 to get labels for these frames. 
> 2. We average confidence scores of same labels for each frame. 
> 3. Return results in sorted order of confidence score. 
> I am writing code for different modes of frame extractions -
> 1. Extract center image.
> 2. Extract frames after every fixed interval.
> 3. Extract N frames equally divided across video.
> We used this approach in [0]. Code in [1]
> [0] https://github.com/USCDataScience/hadoop-pot
> [1] https://github.com/USCDataScience/video-recognition



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

Mime
View raw message