spark-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From YiZhi Liu <javeli...@gmail.com>
Subject What is the difference between ml.classification.LogisticRegression and mllib.classification.LogisticRegressionWithLBFGS
Date Wed, 07 Oct 2015 06:47:57 GMT
Hi everyone,

I'm curious about the difference between
ml.classification.LogisticRegression and
mllib.classification.LogisticRegressionWithLBFGS. Both of them are
optimized using LBFGS, the only difference I see is LogisticRegression
takes DataFrame while LogisticRegressionWithLBFGS takes RDD.

So I wonder,
1. Why not simply add a DataFrame training interface to
LogisticRegressionWithLBFGS?
2. Whats the difference between ml.classification and
mllib.classification package?
3. Why doesn't ml.classification.LogisticRegression call
mllib.optimization.LBFGS / mllib.optimization.OWLQN directly? Instead,
it uses breeze.optimize.LBFGS and re-implements most of the procedures
in mllib.optimization.{LBFGS,OWLQN}.

Thank you.

Best,

-- 
Yizhi Liu
Senior Software Engineer / Data Mining
www.mvad.com, Shanghai, China

---------------------------------------------------------------------
To unsubscribe, e-mail: dev-unsubscribe@spark.apache.org
For additional commands, e-mail: dev-help@spark.apache.org


Mime
View raw message