spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Pat McDonough (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (SPARK-1392) Local spark-shell Runs Out of Memory With Default Settings
Date Wed, 02 Apr 2014 05:53:15 GMT

     [ https://issues.apache.org/jira/browse/SPARK-1392?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Pat McDonough updated SPARK-1392:
---------------------------------

    Description: 
Using the spark-0.9.0 Hadoop2 binary from the project download page, running the spark-shell
locally in out of the box configuration, and attempting to cache all the attached data, spark
OOMs with: java.lang.OutOfMemoryError: GC overhead limit exceeded

You can work around the issue by either decreasing {{spark.storage.memoryFraction}} or increasing
{{SPARK_MEM}}

  was:
Using the spark-0.9.0 Hadoop2 binary from the project download page, running the spark-shell
locally in out of the box configuration, and attempting to cache all the attached data, spark
OOMs with: {{java.lang.OutOfMemoryError: GC overhead limit exceeded}}

{code}
val explore = sc.textFile("/Users/pat/Projects/training-materials/Data/wiki_links")
explore.cache
explore.count
{code}

You can work around the issue by either decreasing {{spark.storage.memoryFraction}} or increasing
{{SPARK_MEM}}




> Local spark-shell Runs Out of Memory With Default Settings
> ----------------------------------------------------------
>
>                 Key: SPARK-1392
>                 URL: https://issues.apache.org/jira/browse/SPARK-1392
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core
>    Affects Versions: 0.9.0
>         Environment: OS X 10.9.2, Java 1.7.0_51, Scala 2.10.3
>            Reporter: Pat McDonough
>
> Using the spark-0.9.0 Hadoop2 binary from the project download page, running the spark-shell
locally in out of the box configuration, and attempting to cache all the attached data, spark
OOMs with: java.lang.OutOfMemoryError: GC overhead limit exceeded
> You can work around the issue by either decreasing {{spark.storage.memoryFraction}} or
increasing {{SPARK_MEM}}



--
This message was sent by Atlassian JIRA
(v6.2#6252)

Mime
View raw message