spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Apache Spark (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (SPARK-8887) Explicitly define which data types can be used as dynamic partition columns
Date Wed, 12 Aug 2015 17:41:46 GMT

    [ https://issues.apache.org/jira/browse/SPARK-8887?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14693908#comment-14693908
] 

Apache Spark commented on SPARK-8887:
-------------------------------------

User 'yjshen' has created a pull request for this issue:
https://github.com/apache/spark/pull/8132

> Explicitly define which data types can be used as dynamic partition columns
> ---------------------------------------------------------------------------
>
>                 Key: SPARK-8887
>                 URL: https://issues.apache.org/jira/browse/SPARK-8887
>             Project: Spark
>          Issue Type: Sub-task
>          Components: SQL
>    Affects Versions: 1.4.0
>            Reporter: Cheng Lian
>            Assignee: Cheng Lian
>
> {{InsertIntoHadoopFsRelation}} implements Hive compatible dynamic partitioning insertion,
which uses {{String.valueOf}} to write encode partition column values into dynamic partition
directories. This actually limits the data types that can be used in partition column. For
example, string representation of {{StructType}} values is not well defined. However, this
limitation is not explicitly enforced.
> There are several things we can improve:
> # Enforce dynamic column data type requirements by adding analysis rules and throws {{AnalysisException}}
when violation occurs.
> # Abstract away string representation of various data types, so that we don't need to
convert internal representation types (e.g. {{UTF8String}}) to external types (e.g. {{String}}).
A set of Hive compatible implementations should be provided to ensure compatibility with Hive.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message