spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Brian Wheeler (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (SPARK-12940) Partition field in Spark SQL WHERE clause causing Exception
Date Sat, 23 Jan 2016 16:46:39 GMT

     [ https://issues.apache.org/jira/browse/SPARK-12940?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Brian Wheeler updated SPARK-12940:
----------------------------------
    Affects Version/s: 1.6.0
          Description: 
I have partitioned Parquet that I am trying to query with Spark SQL. When I involve a partition
column in the {{WHERE}} clause when using {{OR}} I get an exception.

I have had this issue when using spark-submit on a cluster when the Parquet was created externally
and registered with Hive JDBC-backed metastore externally. I can also duplicate this behavior
with a simplified example in the spark shell. I will include the simplified example. Note
that I am using my hive-site.xml when I launch the spark-shell so the metastore is set up
the same way.

I also tried this locally with the same results on a Mac laptop with 1.6.0.

Create some partitioned parquet:
{code}
case class Hit(meta_ts_unix_ms: Long, username: String, srclatitude: Double, srclongitude:
Double, srccity: String, srcregion: String, srccountrycode: String, metaclass: String)

val rdd = sc.parallelize(Array(Hit(34L, "user1", 45.2, 23.2, "city1", "state1", "US", "blah,
other"), Hit(35L, "user1", 53.2, 11.2, "city2", "state2", "US", "blah")))

sqlContext.createDataFrame(rdd).registerTempTable("test_table")

sqlContext.sql("select * from test_table where meta_ts_unix_ms = 35").write.parquet("file:///tmp/year=2015/month=12/day=4/hour=1/")
sqlContext.sql("select * from test_table where meta_ts_unix_ms = 34").write.parquet("file:///tmp/year=2015/month=12/day=3/hour=23/")
{code}

Create an external table from the parquet:
{code}
sqlContext.createExternalTable("test_table2", "file:///tmp/year=2015/", "parquet")
{code}

If I understand correctly the partitions were discovered automatically because they show up
in the describe command even though they were not part of the schema generated from the case
classes:
{code}
+---------------+---------+-------+
|       col_name|data_type|comment|
+---------------+---------+-------+
|meta_ts_unix_ms|   bigint|       |
|       username|   string|       |
|    srclatitude|   double|       |
|   srclongitude|   double|       |
|        srccity|   string|       |
|      srcregion|   string|       |
| srccountrycode|   string|       |
|      metaclass|   string|       |
|           year|      int|       |
|          month|      int|       |
|            day|      int|       |
|           hour|      int|       |
+---------------+---------+-------+
{code}

This query:
{code}
sqlContext.sql("SELECT meta_ts_unix_ms,username,srclatitude,srclongitude,srccity,srcregion,srccountrycode
FROM test_table2 WHERE meta_ts_unix_ms IS NOT NULL AND username IS NOT NULL AND metaclass
like '%blah%' OR hour = 1").show()
{code}

Throws this exception:
{noformat}
16/01/20 21:36:46 WARN TaskSetManager: Lost task 0.0 in stage 13.0 (TID 84, ip-192-168-111-222.ec2.internal):
org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute, tree: metaclass#53
	at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49)
	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:86)
	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:85)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:227)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:227)
	at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:51)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:226)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:249)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
	at scala.collection.Iterator$class.foreach(Iterator.scala:727)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
	at scala.collection.AbstractIterator.to(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
	at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
	at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:279)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:249)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
	at scala.collection.Iterator$class.foreach(Iterator.scala:727)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
	at scala.collection.AbstractIterator.to(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
	at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
	at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:279)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:249)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
	at scala.collection.Iterator$class.foreach(Iterator.scala:727)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
	at scala.collection.AbstractIterator.to(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
	at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
	at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:279)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:217)
	at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:85)
	at org.apache.spark.sql.catalyst.expressions.InterpretedPredicate$.create(predicates.scala:31)
	at org.apache.spark.sql.execution.SparkPlan.newPredicate(SparkPlan.scala:281)
	at org.apache.spark.sql.execution.Filter$$anonfun$4.apply(basicOperators.scala:114)
	at org.apache.spark.sql.execution.Filter$$anonfun$4.apply(basicOperators.scala:113)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:710)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:710)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
	at org.apache.spark.scheduler.Task.run(Task.scala:88)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: Couldn't find metaclass#53 in [meta_ts_unix_ms#45L,username#46,srclatitude#47,srclongitude#48,srccity#49,srcregion#50,srccountrycode#51]
	at scala.sys.package$.error(package.scala:27)
	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:92)
	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:86)
	at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:48)
	... 77 more
{noformat}

This query works fine and returns expected results but it does not involve any of the partition
columns in the {{OR}} portion of the {{WHERE}} clause:
{code}
sqlContext.sql("SELECT meta_ts_unix_ms,username,srclatitude,srclongitude,srccity,srcregion,srccountrycode
FROM test_table2 WHERE meta_ts_unix_ms IS NOT NULL AND username IS NOT NULL AND metaclass
like '%other%' OR metaclass = 'blah'").show()
{code}

  was:
I have partitioned Parquet that I am trying to query with Spark SQL. When I involve a partition
column in the {{WHERE}} clause when using {{OR}} I get an exception.

I have had this issue when using spark-submit on a cluster when the Parquet was created externally
and registered with Hive JDBC-backed metastore externally. I can also duplicate this behavior
with a simplified example in the spark shell. I will include the simplified example. Note
that I am using my hive-site.xml when I launch the spark-shell so the metastore is set up
the same way.

Create some partitioned parquet:
{code}
case class Hit(meta_ts_unix_ms: Long, username: String, srclatitude: Double, srclongitude:
Double, srccity: String, srcregion: String, srccountrycode: String, metaclass: String)

val rdd = sc.parallelize(Array(Hit(34L, "user1", 45.2, 23.2, "city1", "state1", "US", "blah,
other"), Hit(35L, "user1", 53.2, 11.2, "city2", "state2", "US", "blah")))

sqlContext.createDataFrame(rdd).registerTempTable("test_table")

sqlContext.sql("select * from test_table where meta_ts_unix_ms = 35").write.parquet("file:///tmp/year=2015/month=12/day=4/hour=1/")
sqlContext.sql("select * from test_table where meta_ts_unix_ms = 34").write.parquet("file:///tmp/year=2015/month=12/day=3/hour=23/")
{code}

Create an external table from the parquet:
{code}
sqlContext.createExternalTable("test_table2", "file:///tmp/year=2015/", "parquet")
{code}

If I understand correctly the partitions were discovered automatically because they show up
in the describe command even though they were not part of the schema generated from the case
classes:
{code}
+---------------+---------+-------+
|       col_name|data_type|comment|
+---------------+---------+-------+
|meta_ts_unix_ms|   bigint|       |
|       username|   string|       |
|    srclatitude|   double|       |
|   srclongitude|   double|       |
|        srccity|   string|       |
|      srcregion|   string|       |
| srccountrycode|   string|       |
|      metaclass|   string|       |
|           year|      int|       |
|          month|      int|       |
|            day|      int|       |
|           hour|      int|       |
+---------------+---------+-------+
{code}

This query:
{code}
sqlContext.sql("SELECT meta_ts_unix_ms,username,srclatitude,srclongitude,srccity,srcregion,srccountrycode
FROM test_table2 WHERE meta_ts_unix_ms IS NOT NULL AND username IS NOT NULL AND metaclass
like '%blah%' OR hour = 1").show()
{code}

Throws this exception:
{noformat}
16/01/20 21:36:46 WARN TaskSetManager: Lost task 0.0 in stage 13.0 (TID 84, ip-192-168-111-222.ec2.internal):
org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute, tree: metaclass#53
	at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49)
	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:86)
	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:85)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:227)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:227)
	at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:51)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:226)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:249)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
	at scala.collection.Iterator$class.foreach(Iterator.scala:727)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
	at scala.collection.AbstractIterator.to(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
	at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
	at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:279)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:249)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
	at scala.collection.Iterator$class.foreach(Iterator.scala:727)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
	at scala.collection.AbstractIterator.to(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
	at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
	at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:279)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:249)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
	at scala.collection.Iterator$class.foreach(Iterator.scala:727)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
	at scala.collection.AbstractIterator.to(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
	at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
	at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:279)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:232)
	at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:217)
	at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:85)
	at org.apache.spark.sql.catalyst.expressions.InterpretedPredicate$.create(predicates.scala:31)
	at org.apache.spark.sql.execution.SparkPlan.newPredicate(SparkPlan.scala:281)
	at org.apache.spark.sql.execution.Filter$$anonfun$4.apply(basicOperators.scala:114)
	at org.apache.spark.sql.execution.Filter$$anonfun$4.apply(basicOperators.scala:113)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:710)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:710)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
	at org.apache.spark.scheduler.Task.run(Task.scala:88)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: Couldn't find metaclass#53 in [meta_ts_unix_ms#45L,username#46,srclatitude#47,srclongitude#48,srccity#49,srcregion#50,srccountrycode#51]
	at scala.sys.package$.error(package.scala:27)
	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:92)
	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:86)
	at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:48)
	... 77 more
{noformat}

This query works fine and returns expected results but it does not involve any of the partition
columns in the {{OR}} portion of the {{WHERE}} clause:
{code}
sqlContext.sql("SELECT meta_ts_unix_ms,username,srclatitude,srclongitude,srccity,srcregion,srccountrycode
FROM test_table2 WHERE meta_ts_unix_ms IS NOT NULL AND username IS NOT NULL AND metaclass
like '%other%' OR metaclass = 'blah'").show()
{code}


> Partition field in Spark SQL WHERE clause causing Exception
> -----------------------------------------------------------
>
>                 Key: SPARK-12940
>                 URL: https://issues.apache.org/jira/browse/SPARK-12940
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 1.5.2, 1.6.0
>         Environment: AWS EMR 4.2, OSX
>            Reporter: Brian Wheeler
>
> I have partitioned Parquet that I am trying to query with Spark SQL. When I involve a
partition column in the {{WHERE}} clause when using {{OR}} I get an exception.
> I have had this issue when using spark-submit on a cluster when the Parquet was created
externally and registered with Hive JDBC-backed metastore externally. I can also duplicate
this behavior with a simplified example in the spark shell. I will include the simplified
example. Note that I am using my hive-site.xml when I launch the spark-shell so the metastore
is set up the same way.
> I also tried this locally with the same results on a Mac laptop with 1.6.0.
> Create some partitioned parquet:
> {code}
> case class Hit(meta_ts_unix_ms: Long, username: String, srclatitude: Double, srclongitude:
Double, srccity: String, srcregion: String, srccountrycode: String, metaclass: String)
> val rdd = sc.parallelize(Array(Hit(34L, "user1", 45.2, 23.2, "city1", "state1", "US",
"blah, other"), Hit(35L, "user1", 53.2, 11.2, "city2", "state2", "US", "blah")))
> sqlContext.createDataFrame(rdd).registerTempTable("test_table")
> sqlContext.sql("select * from test_table where meta_ts_unix_ms = 35").write.parquet("file:///tmp/year=2015/month=12/day=4/hour=1/")
> sqlContext.sql("select * from test_table where meta_ts_unix_ms = 34").write.parquet("file:///tmp/year=2015/month=12/day=3/hour=23/")
> {code}
> Create an external table from the parquet:
> {code}
> sqlContext.createExternalTable("test_table2", "file:///tmp/year=2015/", "parquet")
> {code}
> If I understand correctly the partitions were discovered automatically because they show
up in the describe command even though they were not part of the schema generated from the
case classes:
> {code}
> +---------------+---------+-------+
> |       col_name|data_type|comment|
> +---------------+---------+-------+
> |meta_ts_unix_ms|   bigint|       |
> |       username|   string|       |
> |    srclatitude|   double|       |
> |   srclongitude|   double|       |
> |        srccity|   string|       |
> |      srcregion|   string|       |
> | srccountrycode|   string|       |
> |      metaclass|   string|       |
> |           year|      int|       |
> |          month|      int|       |
> |            day|      int|       |
> |           hour|      int|       |
> +---------------+---------+-------+
> {code}
> This query:
> {code}
> sqlContext.sql("SELECT meta_ts_unix_ms,username,srclatitude,srclongitude,srccity,srcregion,srccountrycode
FROM test_table2 WHERE meta_ts_unix_ms IS NOT NULL AND username IS NOT NULL AND metaclass
like '%blah%' OR hour = 1").show()
> {code}
> Throws this exception:
> {noformat}
> 16/01/20 21:36:46 WARN TaskSetManager: Lost task 0.0 in stage 13.0 (TID 84, ip-192-168-111-222.ec2.internal):
org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute, tree: metaclass#53
> 	at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49)
> 	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:86)
> 	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:85)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:227)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:227)
> 	at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:51)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:226)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:249)
> 	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
> 	at scala.collection.Iterator$class.foreach(Iterator.scala:727)
> 	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
> 	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
> 	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
> 	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
> 	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
> 	at scala.collection.AbstractIterator.to(Iterator.scala:1157)
> 	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
> 	at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
> 	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
> 	at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:279)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:232)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:249)
> 	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
> 	at scala.collection.Iterator$class.foreach(Iterator.scala:727)
> 	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
> 	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
> 	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
> 	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
> 	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
> 	at scala.collection.AbstractIterator.to(Iterator.scala:1157)
> 	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
> 	at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
> 	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
> 	at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:279)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:232)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:232)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:249)
> 	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
> 	at scala.collection.Iterator$class.foreach(Iterator.scala:727)
> 	at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
> 	at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
> 	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
> 	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
> 	at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
> 	at scala.collection.AbstractIterator.to(Iterator.scala:1157)
> 	at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
> 	at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
> 	at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
> 	at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:279)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:232)
> 	at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:217)
> 	at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:85)
> 	at org.apache.spark.sql.catalyst.expressions.InterpretedPredicate$.create(predicates.scala:31)
> 	at org.apache.spark.sql.execution.SparkPlan.newPredicate(SparkPlan.scala:281)
> 	at org.apache.spark.sql.execution.Filter$$anonfun$4.apply(basicOperators.scala:114)
> 	at org.apache.spark.sql.execution.Filter$$anonfun$4.apply(basicOperators.scala:113)
> 	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:710)
> 	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:710)
> 	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> 	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
> 	at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
> 	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> 	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
> 	at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
> 	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
> 	at org.apache.spark.scheduler.Task.run(Task.scala:88)
> 	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
> 	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
> 	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
> 	at java.lang.Thread.run(Thread.java:745)
> Caused by: java.lang.RuntimeException: Couldn't find metaclass#53 in [meta_ts_unix_ms#45L,username#46,srclatitude#47,srclongitude#48,srccity#49,srcregion#50,srccountrycode#51]
> 	at scala.sys.package$.error(package.scala:27)
> 	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:92)
> 	at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:86)
> 	at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:48)
> 	... 77 more
> {noformat}
> This query works fine and returns expected results but it does not involve any of the
partition columns in the {{OR}} portion of the {{WHERE}} clause:
> {code}
> sqlContext.sql("SELECT meta_ts_unix_ms,username,srclatitude,srclongitude,srccity,srcregion,srccountrycode
FROM test_table2 WHERE meta_ts_unix_ms IS NOT NULL AND username IS NOT NULL AND metaclass
like '%other%' OR metaclass = 'blah'").show()
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message