spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Nick Pentreath (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (SPARK-15581) MLlib 2.1 Roadmap
Date Fri, 01 Jul 2016 11:27:11 GMT

    [ https://issues.apache.org/jira/browse/SPARK-15581?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15358821#comment-15358821
] 

Nick Pentreath commented on SPARK-15581:
----------------------------------------

Could we move the discussion for Breeze specifically over to SPARK-15575? I've made some comments
there.

> MLlib 2.1 Roadmap
> -----------------
>
>                 Key: SPARK-15581
>                 URL: https://issues.apache.org/jira/browse/SPARK-15581
>             Project: Spark
>          Issue Type: Umbrella
>          Components: ML, MLlib
>            Reporter: Joseph K. Bradley
>            Priority: Blocker
>              Labels: roadmap
>
> This is a master list for MLlib improvements we are working on for the next release.
Please view this as a wish list rather than a definite plan, for we don't have an accurate
estimate of available resources. Due to limited review bandwidth, features appearing on this
list will get higher priority during code review. But feel free to suggest new items to the
list in comments. We are experimenting with this process. Your feedback would be greatly appreciated.
> h1. Instructions
> h2. For contributors:
> * Please read https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark
carefully. Code style, documentation, and unit tests are important.
> * If you are a first-time Spark contributor, please always start with a [starter task|https://issues.apache.org/jira/issues/?filter=12333209]
rather than a medium/big feature. Based on our experience, mixing the development process
with a big feature usually causes long delay in code review.
> * Never work silently. Let everyone know on the corresponding JIRA page when you start
working on some features. This is to avoid duplicate work. For small features, you don't need
to wait to get JIRA assigned.
> * For medium/big features or features with dependencies, please get assigned first before
coding and keep the ETA updated on the JIRA. If there exist no activity on the JIRA page for
a certain amount of time, the JIRA should be released for other contributors.
> * Do not claim multiple (>3) JIRAs at the same time. Try to finish them one after
another.
> * Remember to add the `@Since("VERSION")` annotation to new public APIs.
> * Please review others' PRs (https://spark-prs.appspot.com/#mllib). Code review greatly
helps to improve others' code as well as yours.
> h2. For committers:
> * Try to break down big features into small and specific JIRA tasks and link them properly.
> * Add a "starter" label to starter tasks.
> * Put a rough estimate for medium/big features and track the progress.
> * If you start reviewing a PR, please add yourself to the Shepherd field on JIRA.
> * If the code looks good to you, please comment "LGTM". For non-trivial PRs, please ping
a maintainer to make a final pass.
> * After merging a PR, create and link JIRAs for Python, example code, and documentation
if applicable.
> h1. Roadmap (*WIP*)
> This is NOT [a complete list of MLlib JIRAs for 2.1| https://issues.apache.org/jira/issues/?jql=project%20%3D%20SPARK%20AND%20component%20in%20(ML%2C%20MLlib%2C%20SparkR%2C%20GraphX)%20AND%20%22Target%20Version%2Fs%22%20%3D%202.1.0%20AND%20(fixVersion%20is%20EMPTY%20OR%20fixVersion%20!%3D%202.1.0)%20AND%20(Resolution%20is%20EMPTY%20OR%20Resolution%20in%20(Done%2C%20Fixed%2C%20Implemented))%20ORDER%20BY%20priority].
We only include umbrella JIRAs and high-level tasks.
> Major efforts in this release:
> * Feature parity for the DataFrames-based API (`spark.ml`), relative to the RDD-based
API
> * ML persistence
> * Python API feature parity and test coverage
> * R API expansion and improvements
> * Note about new features: As usual, we expect to expand the feature set of MLlib.  However,
we will prioritize API parity, bug fixes, and improvements over new features.
> Note `spark.mllib` is in maintenance mode now.  We will accept bug fixes for it, but
new features, APIs, and improvements will only be added to `spark.ml`.
> h2. Critical feature parity in DataFrame-based API
> * Umbrella JIRA: [SPARK-4591]
> h2. Persistence
> * Complete persistence within MLlib
> ** Python tuning (SPARK-13786)
> * MLlib in R format: compatibility with other languages (SPARK-15572)
> * Impose backwards compatibility for persistence (SPARK-15573)
> h2. Python API
> * Standardize unit tests for Scala and Python to improve and consolidate test coverage
for Params, persistence, and other common functionality (SPARK-15571)
> * Improve Python API handling of Params, persistence (SPARK-14771) (SPARK-14706)
> ** Note: The linked JIRAs for this are incomplete.  More to be created...
> ** Related: Implement Python meta-algorithms in Scala (to simplify persistence) (SPARK-15574)
> * Feature parity: The main goal of the Python API is to have feature parity with the
Scala/Java API. You can find a [complete list here| https://issues.apache.org/jira/issues/?jql=project%20%3D%20SPARK%20AND%20status%20in%20(Open%2C%20"In%20Progress"%2C%20Reopened)%20AND%20component%20in%20(ML%2C%20MLlib)%20AND%20component%20in%20(PySpark)%20AND%20"Target%20Version%2Fs"%20%3D%202.1.0%20ORDER%20BY%20priority%20DESC].
The tasks fall into two major categories:
> ** Python API for missing methods (SPARK-14813)
> ** Python API for new algorithms. Committers should create a JIRA for the Python API
after merging a public feature in Scala/Java.
> h2. SparkR
> * Improve R formula support and implementation (SPARK-15540)
> * Various SparkR ML API and usability improvements
> ** Note: No linked JIRA yet, but need to create an umbrella once more issues are collected.
> * Wrap more MLlib algorithms
> * Release SparkR on CRAN [SPARK-15799]
> h2. Pipeline API
> * Usability: Automatic feature preprocessing [SPARK-11106]
> * ML attribute API improvements (SPARK-8515)
> * test Kaggle datasets (SPARK-9941)
> * See (SPARK-5874) for a list of other possibilities
> h2. Algorithms and performance
> * Trees & ensembles scaling & speed (SPARK-14045), (SPARK-14046), (SPARK-14047)
> * Locality sensitive hashing (LSH) (SPARK-5992)
> * Similarity search / nearest neighbors (SPARK-2336)
> Additional (may be lower priority):
> * robust linear regression with Huber loss (SPARK-3181)
> * vector-free L-BFGS (SPARK-10078)
> * tree partition by features (SPARK-3717)
> * local linear algebra (SPARK-6442)
> * weighted instance support (SPARK-9610)
> ** random forest (SPARK-9478)
> ** GBT (SPARK-9612)
> * deep learning (SPARK-5575)
> ** autoencoder (SPARK-10408)
> ** restricted Boltzmann machine (RBM) (SPARK-4251)
> ** convolutional neural network (stretch)
> * factorization machine (SPARK-7008)
> * distributed LU decomposition (SPARK-8514)
> h2. Other
> * Infra
> ** Testing for example code (SPARK-12347)
> ** Remove breeze from dependencies (SPARK-15575)
> * public dataset loader (SPARK-10388)
> * Documentation: improve organization of user guide (SPARK-8517)



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message