spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Xiao Li (Jira)" <>
Subject [jira] [Commented] (SPARK-30316) data size boom after shuffle writing dataframe save as parquet
Date Mon, 23 Dec 2019 23:06:00 GMT


Xiao Li commented on SPARK-30316:

The compression ratio depends on your data layout, instead of number of row. 

> data size boom after shuffle writing dataframe save as parquet
> --------------------------------------------------------------
>                 Key: SPARK-30316
>                 URL:
>             Project: Spark
>          Issue Type: Improvement
>          Components: Shuffle, SQL
>    Affects Versions: 2.4.4
>            Reporter: Cesc 
>            Priority: Major
> When I read a same parquet file and then save it in two ways, with shuffle and without
shuffle, I found the size of output parquet files are quite different. For example,  an origin
parquet file with 800 MB size, if save without shuffle, the size is still 800MB, whereas if
I use method repartition and then save it as in parquet format, the data size increase to
2.5GB. Row numbers, column numbers and content of two output files are all the same.
> I wonder:
> firstly, why data size will increase after repartition/shuffle?
> secondly, if I need shuffle the input dataframe, how to save it as parquet file efficiently
to avoid data size boom?

This message was sent by Atlassian Jira

To unsubscribe, e-mail:
For additional commands, e-mail:

View raw message