spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Mingyu Kim <m...@palantir.com>
Subject Gathering exception stack trace
Date Mon, 20 Jan 2014 21:51:35 GMT
Hi all,

I¹m having hard time trying to find out ways to report exception that
happens during computation to the end-user of Spark system without having
them ssh into the worker nodes or accessing Spark UI. For example, if some
exception happens in the code that runs on worker nodes (e.g.
IllegalStateException due to wrong user input), SparkContext only shows the
following vague exception, and I¹d have to dig into the worker node to get
the actual exception.

> Exception saving /tmp/data/dTableIL.dtconfig: org.apache.spark.SparkException:
> Job failed: Task 343.0:8 failed more than 4 times
> org.apache.spark.SparkException: Job failed: Task 343.0:8 failed more than 4
> times
> at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGSchedul
> er.scala:760)
> at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGSchedul
> er.scala:758)
> at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:60)
> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:758)
> at 
> org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:379)
> at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGSchedule
> r$$run(DAGScheduler.scala:441)
> at org.apache.spark.scheduler.DAGScheduler$$anon$1.run(DAGScheduler.scala:149)

Is there any way to forward the exception to SparkContext? If not, what are
some work-arounds that can mitigate the problem here?

Thanks in advance!

Mingyu



Mime
View raw message